scholarly journals Whole-Genome Sequences of a Cluster of 14 Unidentified Related Veillonella sp. Strains from Human Clinical Samples and Type Strains of 3 Veillonella Validated Species

2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Fabien Aujoulat ◽  
Michel R. Popoff ◽  
Laure Diancourt ◽  
Alexis Criscuolo ◽  
Hélène Jean-Pierre ◽  
...  

We report 17 draft genomes for 14 unidentified Veillonella sp. strains closely related in 16S rRNA gene-based phylogeny and type strains of 3 Veillonella species with the aims of deciphering relationships between related species, evaluating the accuracy of current thresholds for species delineation, and robustly describing new species in the genus.

2016 ◽  
Vol 54 (8) ◽  
pp. 1956-1963 ◽  
Author(s):  
George M. Garrity

Taxonomy is often criticized for being too conservative and too slow and having limited relevance because it has not taken into consideration the latest methods and findings. Yet the cumulative work product of its practitioners underpins contemporary microbiology and serves as a principal means of shaping and referencing knowledge. Using methods drawn from the field of exploratory data analysis, this minireview examines the current state of the field as it transitions from a taxonomy based on 16S rRNA gene sequences to one based on whole-genome sequences and tests the validity of some commonly held beliefs.


2019 ◽  
Vol 8 (47) ◽  
Author(s):  
David A. Wilkinson ◽  
Lynn E. Rogers ◽  
Ahmed Fayaz ◽  
Rukhshana N. Akhter ◽  
Patrick J. Biggs ◽  
...  

Draft genomes of five Campylobacter isolates recovered from New Zealand brushtail possums are described. Genome sizes ranged from 1.591 Mbp to 1.594 Mbp, with G+C contents of 29.9% to 29.95%. Comparison to Australian Campylobacter 16S rRNA gene sequences suggests that the species may be common to possums.


2012 ◽  
Vol 62 (1) ◽  
pp. 188-195 ◽  
Author(s):  
Hiroaki Minegishi ◽  
Masahiro Kamekura ◽  
Tomomi Kitajima-Ihara ◽  
Kaoru Nakasone ◽  
Akinobu Echigo ◽  
...  

In many prokaryotic species, 16S rRNA genes are present in multiple copies, and their sequences in general do not differ significantly owing to concerted evolution. At the time of writing, the genus Haloarcula of the family Halobacteriaceae comprises nine species with validly published names, all of which possess two to four highly heterogeneous 16S rRNA genes. Existence of multiple heterogeneous 16S rRNA genes makes it difficult to reconstruct a biological phylogenetic tree using their sequence data. If the orthologous gene is able to be discriminated from paralogous genes, a tree reconstructed from orthologous genes will reflect a simple biological phylogenetic relationship. At present, however, we have no means to distinguish the orthologous rRNA operon from paralogous ones in the members of the family Halobacteriaceae. In this study, we found that the dihydroorotate oxidase gene, pyrD, was present in the immediate upstream of one 16S rRNA gene in each of ten strains of the family Halobacteriaceae whose genome sequences have been determined, and the direction of the pyrD gene was opposite to that of the 16S rRNA genes. In two other strains whose genome sequences have been determined, the pyrD gene was present in far separated positions. We designed PCR primer sets to amplify DNA fragments encompassing a region from the conserved region of the pyrD gene to a conserved region of the tRNA-Ala gene or the 23S rRNA gene to determine the 16S rRNA gene sequences preceded by the pyrD gene, and to see if the pyrD gene is conserved in the immediate upstream of rRNA operon(s) in the type strains of the type species of 28 genera of the family Halobacteriaceae. Seventeen type strains, including the ten strains mentioned above, gave amplified DNA fragments of approximately 4000 bp, while eleven type strains, including the two strains mentioned above, did not give any PCR products. These eleven strains are members of the Clade I haloarchaea, originally defined by Walsh et al. (2004) and expanded by Minegishi et al. (2010). Analysis of contig sequences of three strains belonging to the Clade I haloarchaea also revealed the absence of the pyrD gene in the immediate upstream of any 16S rRNA genes. It may be scientifically sound to hypothesize that during the evolution of members of the family Halobacteriaceae, a pyrD gene transposition event happened in one group and this was followed by subsequent speciation processes in each group, yielding species/genera of the Clade I group and ‘the rest’ of the present family Halobacteriaceae.


Author(s):  
Luciane A. Chimetto ◽  
Ilse Cleenwerck ◽  
Marcelo Brocchi ◽  
Anne Willems ◽  
Paul De Vos ◽  
...  

A Gram-negative, aerobic bacterium, designated R-40509T, was isolated from mucus of the reef builder coral (Mussismilia hispida) located in the São Sebastião Channel, São Paulo, Brazil. The strain was oxidase-positive and catalase-negative, and required Na+ for growth. Its phylogenetic position was in the genus Marinobacterium and the closest related species were Marinobacterium sediminicola, Marinobacterium maritimum and Marinobacterium stanieri; the isolate exhibited 16S rRNA gene sequence similarities of 97.5–98.0 % with the type strains of these species. 16S rRNA gene sequence similarities with other type strains of the genus Marinobacterium were below 96 %. DNA–DNA hybridizations between strain R-40509T and the type strains of the phylogenetically closest species of the genus Marinobacterium revealed less than 70 % DNA–DNA relatedness, supporting the novel species status of the strain. Phenotypic characterization revealed that the strain was able to grow at 15–42 °C and in medium containing up to 9 % NaCl. The isolate could be differentiated from phenotypically related species by several features, including its ability to utilize d-alanine, l-alanine, bromosuccinic acid, β-hydroxybutyric acid and α-ketovaleric acid, but not acetate or l-arabinose. It produced acetoin (Voges–Proskauer), but did not have esterase lipase (C8) or catalase activities. It possessed C18 : 1 ω7c (35 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 25 %) and C16 : 0 (22 %) as major cellular fatty acids. The DNA G+C content was 58.5 mol%. The name Marinobacterium coralli sp. nov. is proposed to accommodate this novel isolate; the type strain is R-40509T (=LMG 25435T =CAIM 1449T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3862-3866 ◽  
Author(s):  
Shi Peng ◽  
Dong Dan Hong ◽  
Yang Bing Xin ◽  
Li Ming Jun ◽  
Wei Ge Hong

A Gram-staining-negative, non-motile, catalase- and oxidase-positive strain, designated CCNWSP36-1T, was isolated from the nodule surface of soybean [Glycine max (L.) Merrill] cultivar Zhonghuang 13. The 16S rRNA gene sequence analysis clearly showed that the isolate represented a member of the genus Sphingobacterium . On the basis of pairwise comparisons of 16S rRNA gene sequences, strain CCNWSP36-1T showed 96.8 % similarity to Sphingobacterium nematocida CCTCC AB 2010390T and less than 95.2 % similarity to other members of the genus Sphingobacterium . Growth of strain CCNWSP36-1T occurred at 10–40 °C and at pH 5.0–9.0. The NaCl range (w/v) for growth was 0–4 %. The predominant isoprenoid quinone was MK-7. The polar lipids were phosphatidylethanolamine and several unidentified polar lipids. Sphingolipid was present. The major fatty acids were iso-C15 : 0 and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c). The G+C content of the genomic DNA was 41.1 mol%. As the physiological and biochemical characteristics of strain CCNWSP36-1T and the type strains of its closest phylogenetic neighbours showed clear differences, a novel species, Sphingobacterium yanglingense, is proposed. The type strain is CCNWSP36-1T ( = ACCC 19328T = JCM 30166T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2143-2146 ◽  
Author(s):  
Dong-Shan An ◽  
Wan-Taek Im ◽  
Sung-Taik Lee ◽  
Min-Ho Yoon

A novel bacterial strain designated Gsoil 616T was isolated from a soil sample of a ginseng field in Pocheon province (South Korea) and was characterized taxonomically by using a polyphasic approach. The isolate was Gram-positive, strictly aerobic, non-motile, non-spore-forming and rod- or coccoid-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Nocardioides in the family Nocardioidaceae but was clearly separated from established species of this genus. The 16S rRNA gene sequence similarities between strain Gsoil 616T and the type strains of Nocardioides species with validly published names ranged from 91.8 to 96.1 %. The G+C content of the genomic DNA was 73 mol%. Phenotypic and chemotaxonomic data [major menaquinone MK-8(H4) and major fatty acid iso-C16 : 0] supported the affiliation of strain Gsoil 616T to the genus Nocardioides. However, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolate from other Nocardioides species. Therefore, strain Gsoil 616T represented a novel species within the genus Nocardioides, for which the name Nocardioides panacihumi sp. nov. is proposed. The type strain is Gsoil 616T (=KCTC 19187T =DSM 18660T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1799-1803 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soo-Hwan Yeo ◽  
In-Gi Kim ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming and slightly halophilic rods (strains SW-145T and SW-156T) were isolated from sea water of the Yellow Sea in Korea. Strains SW-145T and SW-156T grew optimally at 37 and 30–37 °C, respectively, and in the presence of 2–6 % (w/v) NaCl. Strains SW-145T and SW-156T were chemotaxonomically characterized as having ubiquinone-9 as the predominant respiratory lipoquinone and C16 : 0, C18 : 1 ω9c, C16 : 1 ω9c and C12 : 0 3-OH as the major fatty acids. The DNA G+C contents of strains SW-145T and SW-156T were 58 and 57 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-145T and SW-156T fell within the evolutionary radiation enclosed by the genus Marinobacter. The 16S rRNA gene sequences of strains SW-145T and SW-156T were 94·8 % similar. Strains SW-145T and SW-156T exhibited 16S rRNA gene sequence similarity levels of 94·3–98·1 and 95·4–97·7 %, respectively, with respect to the type strains of all Marinobacter species. Levels of DNA–DNA relatedness, together with 16S rRNA gene sequence similarity values, indicated that strains SW-145T and SW-156T are members of two species that are distinct from seven Marinobacter species with validly published names. On the basis of phenotypic properties and phylogenetic and genotypic distinctiveness, strains SW-145T (=KCTC 12185T=DSM 16070T) and SW-156T (=KCTC 12184T=DSM 16072T) should be placed in the genus Marinobacter as the type strains of two distinct novel species, for which the names Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov. are proposed.


Microbiome ◽  
2014 ◽  
Vol 2 (1) ◽  
pp. 31 ◽  
Author(s):  
Jun Hang ◽  
Valmik Desai ◽  
Nela Zavaljevski ◽  
Yu Yang ◽  
Xiaoxu Lin ◽  
...  

2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Jean F. Challacombe ◽  
Jeannine M. Petersen ◽  
La Verne Gallegos-Graves ◽  
David Hodge ◽  
Segaran Pillai ◽  
...  

ABSTRACT Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features—for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.


2010 ◽  
Vol 60 (4) ◽  
pp. 754-758 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-positive, non-motile and coccoid-, short rod- or rod-shaped bacterial strain, ISL-16T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain ISL-16T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-16T joined the cluster comprising species of the genus Planococcus. Its 16S rRNA gene sequence contained the same signature nucleotides as those defined for the genus Planococcus. Strain ISL-16T exhibited 16S rRNA gene sequence similarity values of 96.9–98.2 % to the type strains of species of the genus Planococcus. Strain ISL-16T contained MK-8 and MK-7 as the predominant menaquinones and anteiso-C15 : 0, C16 : 1 ω7c alcohol and anteiso-C17 : 0 as the major fatty acids. The DNA G+C content was 48.3 mol%. DNA–DNA relatedness values between strain ISL-16T and the type strains of species of the genus Planococcus were 15–28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain ISL-16T to be differentiated from recognized species of the genus Planococcus. On the basis of the data presented, strain ISL-16T is considered to represent a novel species of the genus Planococcus, for which the name Planococcus salinarum sp. nov. is proposed. The type strain is ISL-16T (=KCTC 13584T=CCUG 57753T). An emended description of the genus Planococcus is also given.


Sign in / Sign up

Export Citation Format

Share Document