scholarly journals 14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Jana Krtková ◽  
Jennifer Xu ◽  
Marco Lalle ◽  
Melissa Steele-Ogus ◽  
Germain C. M. Alas ◽  
...  

ABSTRACT Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.

2017 ◽  
Author(s):  
Jana Krtková ◽  
Jennifer Xu ◽  
Marco Lalle ◽  
Melissa Steele-Ogus ◽  
Germain C. M. Alas ◽  
...  

AbstractThe phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin, this function has been previously attributed to sequestration of phosphorylated cofilin. The deep branching eukaryote Giardia lamblia lacks cofilin and all other canonical actin-binding proteins (ABPs), and 14-3-3 was identified as an actin-associated protein in Giardia, yet its role in actin regulation was unknown. Gl14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, GlRac, modulates Gl14-3-3's association with actin, providing the first connection between GlRac and the actin cytoskeleton in Giardia. Giardia actin contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a negative regulator of actin filament formation.ImportanceGiardia lacks canonical actin binding proteins. 14-3-3 was identified as an actin interactor but the significance of this interaction was unknown. Loss of 14-3-3 results in ectopic short actin filaments, indicating that 14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that 14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, GlRac, this result provides the first mechanistic connection between GlRac and actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between 14-3-3 and actin suggesting that 14-3-3 is regulating multiple actin complexes. Overall, we find that 14-3-3 is a negative regulator of actin filament formation in Giardia.


2016 ◽  
Vol 27 (16) ◽  
pp. 2519-2522 ◽  
Author(s):  
Pekka Lappalainen

The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades.


Author(s):  
Hamed Ghaffari ◽  
Mohammad Said Saidi ◽  
Bahar Firoozabadi

In this study, a new method for the simulation of the time-dependent behavior of actin cytoskeleton during cell shape change is proposed. For this purpose, a three-dimensional model of endothelial cell consisting of cell membrane, nucleus membrane, and main components of cytoskeleton, namely actin filaments, microtubules, and intermediate filaments is utilized. Actin binding proteins, which play a key role in regulating actin cytoskeleton behavior, are also simulated by using a novel technique. The actin cytoskeleton in this model is more dynamic and adoptable during cell deformation in comparison to previous models. The proposed model is subjected to compressive force between parallel micro plates in order to investigate actin cytoskeleton role in cell stiffening behavior, nucleus deformation, and cell shape change. The validity of the model is examined through the comparison of the obtained results with the data presented in previous literature. Not only does the model force deformation curve lie within a range of the experimental data, but also the elastic modulus of the cell model is in accordance with former studies. Our findings demonstrate that augmentation of actin filaments concentration within the cell reduces force transmission from cell membrane to the nucleus. Furthermore, actin binding proteins concentration increases by the enhancement of cell deformation and it is also indicated that cell stiffening with an increase in applied force is significantly affected by actin filaments reorientation, actin binding proteins reorganization and actin binding proteins augmentation.


1994 ◽  
Vol 125 (2) ◽  
pp. 381-391 ◽  
Author(s):  
J Mulholland ◽  
D Preuss ◽  
A Moon ◽  
A Wong ◽  
D Drubin ◽  
...  

We characterized the yeast actin cytoskeleton at the ultrastructural level using immunoelectron microscopy. Anti-actin antibodies primarily labeled dense, patchlike cortical structures and cytoplasmic cables. This localization recapitulates results obtained with immunofluorescence light microscopy, but at much higher resolution. Immuno-EM double-labeling experiments were conducted with antibodies to actin together with antibodies to the actin binding proteins Abp1p and cofilin. As expected from immunofluorescence experiments, Abp1p, cofilin, and actin colocalized in immuno-EM to the dense patchlike structures but not to the cables. In this way, we can unambiguously identify the patches as the cortical actin cytoskeleton. The cortical actin patches were observed to be associated with the cell surface via an invagination of plasma membrane. This novel cortical cytoskeleton-plasma membrane interface appears to consist of a fingerlike invagination of plasma membrane around which actin filaments and actin binding proteins are organized. We propose a possible role for this unique cortical structure in wall growth and osmotic regulation.


2020 ◽  
Vol 21 (9) ◽  
pp. 3152 ◽  
Author(s):  
Samantha Joy Beckley ◽  
Morgan Campbell Hunter ◽  
Sarah Naulikha Kituyi ◽  
Ianthe Wingate ◽  
Abantika Chakraborty ◽  
...  

Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.


Author(s):  
Minkyo Jung ◽  
Doory Kim ◽  
Ji Young Mun

Actin networks and actin-binding proteins (ABPs) are most abundant in the cytoskeleton of neurons. The function of ABPs in neurons is nucleation of actin polymerization, polymerization or depolymerization regulation, bundling of actin through crosslinking or stabilization, cargo movement along actin filaments, and anchoring of actin to other cellular components. In axons, ABP–actin interaction forms a dynamic, deep actin network, which regulates axon extension, guidance, axon branches, and synaptic structures. In dendrites, actin and ABPs are related to filopodia attenuation, spine formation, and synapse plasticity. ABP phosphorylation or mutation changes ABP–actin binding, which regulates axon or dendritic plasticity. In addition, hyperactive ABPs might also be expressed as aggregates of abnormal proteins in neurodegeneration. Those changes cause many neurological disorders. Here, we will review direct visualization of ABP and actin using various electron microscopy (EM) techniques, super resolution microscopy (SRM), and correlative light and electron microscopy (CLEM) with discussion of important ABPs in neuron.


2005 ◽  
Vol 25 (22) ◽  
pp. 9920-9935 ◽  
Author(s):  
Yoji Kawano ◽  
Takeshi Yoshimura ◽  
Daisuke Tsuboi ◽  
Saeko Kawabata ◽  
Takako Kaneko-Kawano ◽  
...  

ABSTRACT A neuron has two types of highly polarized cell processes, the single axon and multiple dendrites. One of the fundamental questions of neurobiology is how neurons acquire such specific and polarized morphologies. During neuronal development, various actin-binding proteins regulate dynamics of actin cytoskeleton in the growth cones of developing axons. The regulation of actin cytoskeleton in the growth cones is thought to be involved in axon outgrowth and axon-dendrite specification. However, it is largely unknown which actin-binding proteins are involved in axon-dendrite specification and how they are transported into the developing axons. We have previously reported that collapsin response mediator protein 2 (CRMP-2) plays a critical role in axon outgrowth and axon-dendrite specification (N. Inagaki, K. Chihara, N. Arimura, C. Menager, Y. Kawano, N. Matsuo, T. Nishimura, M. Amano, and K. Kaibuchi, Nat. Neurosci. 4:781-782, 2001). Here, we found that CRMP-2 interacted with the specifically Rac1-associated protein 1 (Sra-1)/WASP family verprolin-homologous protein 1 (WAVE1) complex, which is a regulator of actin cytoskeleton. The knockdown of Sra-1 and WAVE1 by RNA interference canceled CRMP-2-induced axon outgrowth and multiple-axon formation in cultured hippocampal neurons. We also found that CRMP-2 interacted with the light chain of kinesin-1 and linked kinesin-1 to the Sra-1/WAVE1 complex. The knockdown of CRMP-2 and kinesin-1 delocalized Sra-1 and WAVE1 from the growth cones of axons. These results suggest that CRMP-2 transports the Sra-1/WAVE1 complex to axons in a kinesin-1-dependent manner and thereby regulates axon outgrowth and formation.


2003 ◽  
Vol 83 (2) ◽  
pp. 433-473 ◽  
Author(s):  
C. G. Dos Remedios ◽  
D. Chhabra ◽  
M. Kekic ◽  
I. V. Dedova ◽  
M. Tsubakihara ◽  
...  

The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin β4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.


Sign in / Sign up

Export Citation Format

Share Document