scholarly journals The Secreted Acid Phosphatase Domain-Containing GRA44 from Toxoplasma gondii Is Required for c-Myc Induction in Infected Cells

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
William J. Blakely ◽  
Michael J. Holmes ◽  
Gustavo Arrizabalaga

ABSTRACT During host cell invasion, the eukaryotic pathogen Toxoplasma gondii forms a parasitophorous vacuole to safely reside within the cell, while it is partitioned from host cell defense mechanisms. From within this safe niche, parasites sabotage multiple host cell systems, including gene expression, apoptosis, and intracellular immune recognition, by secreting a large arsenal of effector proteins. Many parasite proteins studied for active host cell manipulative interactions have been kinases. The translocation of effectors from the parasitophorous vacuole into the host cell is mediated by a putative translocon complex, which includes the proteins MYR1, MYR2, and MYR3. Whether other proteins are involved in the structure or regulation of this putative translocon is not known. We have discovered that the secreted protein GRA44, which contains a putative acid phosphatase domain, interacts with members of this complex and is required for host cell effects downstream of effector secretion. We have determined that GRA44 is processed in a region with homology to sequences targeted by protozoan proteases of the secretory pathway and that both major cleavage fragments are secreted into the parasitophorous vacuole. Immunoprecipitation experiments showed that GRA44 interacts with a large number of secreted proteins, including MYR1. Importantly, conditional knockdown of GRA44 resulted in a lack of host cell c-Myc upregulation, which mimics the phenotype seen when members of the translocon complex are genetically disrupted. Thus, the putative acid phosphatase GRA44 is crucial for host cell alterations during Toxoplasma infection and is associated with the translocon complex which Toxoplasma relies upon for success as an intracellular pathogen. IMPORTANCE Approximately one-third of humans are infected with the parasite Toxoplasma gondii. Toxoplasma infections can lead to severe disease in those with a compromised or suppressed immune system. Additionally, infections during pregnancy present a significant health risk to the developing fetus. Drugs that target this parasite are limited, have significant side effects, and do not target all disease stages. Thus, a thorough understanding of how the parasite propagates within a host is critical in the discovery of novel therapeutic targets. Toxoplasma replication requires that it enter the cells of the infected organism. In order to survive the environment inside a cell, Toxoplasma secretes a large repertoire of proteins, which hijack a number of important cellular functions. How these Toxoplasma proteins move from the parasite into the host cell is not well understood. Our work shows that the putative phosphatase GRA44 is part of a protein complex responsible for this process.

2019 ◽  
Author(s):  
William J Blakely ◽  
Michael J Holmes ◽  
Gustavo Arrizabalaga

ABSTRACTDuring host cell invasion, the eukaryotic pathogen Toxoplasma gondii forms a parsitophorous vacuole to safely reside within, while partitioned from host cell defense mechanisms. From within this safe niche parasites sabotage multiple host cell systems including gene expression, apoptosis and intracellular immune recognition by secreting a large arsenal of effector proteins. Many parasite proteins studied for active host cell manipulative interactions have been kinases. Translocation of effectors from the parasitophorous vacuole into the host cell is mediated by a putative translocon complex, which includes proteins MYR1, MYR2, and MYR3. Whether other proteins are involved in the structure or regulation of this putative translocon is not known. We have discovered that the secreted protein GRA44, which contains a putative acid phosphatase domain, interacts with members of this complex and is required for host cell effects downstream of effector secretion. We have determined GRA44 is processed in a region with homology to sequences targeted by protozoan proteases of the secretory pathway and that both major cleavage fragments are secreted into the parasitophorous vacuole. Immunoprecipitation experiments showed that GRA44 interacts with a large number of secreted proteins included MYR1. Importantly, conditional knockdown of GRA44 resulted in a lack of host cell cMyc upregulation, which mimics the phenotype seen when members of the translocon complex are genetically disrupted. Thus, the putative acid phosphatase GRA44 is crucial for host cell alterations during Toxoplasma infection and is associated with the translocon complex which Toxoplasma relies upon for success as an intracellular pathogen.IMPORTANCEApproximately one third of humans are infected with the parasite Toxoplasma gondii. Toxoplasma infections can lead to severe disease in those with a compromised or suppressed immune system. Additionally, infections during pregnancy present a significant health risk to the developing fetus. Drugs that target this parasite are limited, have significant side effects, and do not target all disease stages. Thus, a thorough understanding of how the parasite propagates within a host is critical in the discovery of novel therapeutic targets. To replicate Toxoplasma requires to enter the cells of the infected organism. In order to survive the environment inside a cell, Toxoplasma secretes a large repertoire of proteins, which hijack a number of important cellular functions. How these Toxoplasma proteins move from the parasite into the host cell is not well understood. Our work shows that the putative phosphatase GRA44 is part of a protein complex responsible for this process.


2012 ◽  
Vol 56 (11) ◽  
pp. 5581-5590 ◽  
Author(s):  
Edwin T. Kamau ◽  
Ananth R. Srinivasan ◽  
Mark J. Brown ◽  
Matthew G. Fair ◽  
Erin J. Caraher ◽  
...  

ABSTRACTToxoplasma gondiiis a globally ubiquitous pathogen that can cause severe disease in immunocompromised humans and the developing fetus. Given the proven role ofToxoplasma-secreted kinases in the interaction ofToxoplasmawith its host cell, identification of novel kinase inhibitors could precipitate the development of new anti-Toxoplasmadrugs and define new pathways important for parasite survival. We selected a small (n= 527) but diverse set of putative kinase inhibitors and screened them for effects on the growth ofToxoplasmain vitro. We identified and validated 14 noncytotoxic compounds, all of which had 50% effective concentrations in the nanomolar to micromolar range. We further characterized eight of these compounds, four inhibitors and four enhancers, by determining their effects on parasite motility, invasion, and the likely cellular target (parasite or host cell). Only two compounds had an effect on parasite motility and invasion. All the inhibitors appeared to target the parasite, and interestingly, two of the enhancers appeared to rather target the host cell, suggesting modulation of host cell pathways beneficial for parasite growth. For the four inhibitors, we also tested their efficacy in a mouse model, where one compound proved potent. Overall, these 14 compounds represent a new and diverse set of small molecules that are likely targeting distinct parasite and host cell pathways. Future work will aim to characterize their molecular targets in both the host and parasite.


2011 ◽  
Vol 80 (3) ◽  
pp. 1156-1165 ◽  
Author(s):  
Viviana Pszenny ◽  
Paul H. Davis ◽  
Xing W. Zhou ◽  
Christopher A. Hunter ◽  
Vern B. Carruthers ◽  
...  

As an intracellular protozoan parasite,Toxoplasma gondiiis likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities.T. gondiiserine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces twoTgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigateTgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles withDolichos bifloruslectin under conditions promotingin vitrodifferentiation. The differentiation phenotype can be partially complemented by eitherTgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and thisin vivophenotype is also complemented by eitherTgPI1 isoform. These results demonstrate thatTgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Gregory M. Wier ◽  
Erica M. McGreevy ◽  
Mark J. Brown ◽  
Jon P. Boyle

ABSTRACTToxoplasma gondiiis an obligate intracellular protozoan parasite that is capable of causing severe disease in immunocompromised humans. How T. gondii is able to modulate the host cell to support itself is still poorly understood. Knowledge pertaining to the host-parasite interaction could be bolstered by developing a system to specifically label parasite proteins while the parasite grows inside the host cell. For this purpose, we have created a strain of T. gondii that expresses a mutant Escherichia coli methionyl-tRNA synthetase (MetRSNLL) that allows methionine tRNA to be loaded with the azide-containing methionine analog azidonorleucine (Anl). Anl-containing proteins are susceptible to a copper-catalyzed “click” reaction to attach affinity tags for purification or fluorescent tags for visualization. The MetRSNLL-Anl system labels nascent T. gondii proteins in an orthogonal fashion, labeling proteins only in MetRSNLL-expressing parasites. This system should be useful for nonradioactive pulse-chase studies and purification of nascently translated proteins. Although this approach allows labeling of a diverse array of parasite proteins, secreted parasite proteins appear to be only minimally labeled in MetRSNLL-expressing T. gondii. The minimal labeling of secreted proteins is likely a consequence of the selective charging of the initiator tRNA (and not the elongator methionine tRNA) by the heterologously expressed bacterial MetRS.IMPORTANCEStudying how T. gondii modifies the host cell to permit its survival is complicated by the complex protein environment of the host cell. The approach presented in this article provides the first method for specific labeling of T. gondii proteins while the parasite grows inside the host cell. We show that this approach is useful for pulse-chase labeling of parasite proteins duringin vitrogrowth. It should also be applicable duringin vivoinfections and in other apicomplexan parasites, including Plasmodium spp.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008771
Author(s):  
Joshua Mayoral ◽  
Tadakimi Tomita ◽  
Vincent Tu ◽  
Jennifer T. Aguilan ◽  
Simone Sidoli ◽  
...  

The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Nathan M. Chasen ◽  
Beejan Asady ◽  
Leandro Lemgruber ◽  
Rossiane C. Vommaro ◽  
Jessica C. Kissinger ◽  
...  

ABSTRACT Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries. Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Felice D. Kelly ◽  
Brian M. Wei ◽  
Alicja M. Cygan ◽  
Michelle L. Parker ◽  
Martin J. Boulanger ◽  
...  

ABSTRACT Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology. Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACT The intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultrapure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single-cell transcriptomic analysis at 1 to 3 h postinfection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild-type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent proinflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggest that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes. IMPORTANCE This work performs transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.


1999 ◽  
Vol 10 (4) ◽  
pp. 1277-1287 ◽  
Author(s):  
Laurence Lecordier ◽  
Corinne Mercier ◽  
L. David Sibley ◽  
Marie-France Cesbron-Delauw

The intracellular parasite Toxoplasma gondii resides within a specialized compartment, the parasitophorous vacuole (PV), that resists fusion with host cell endocytic and lysosomal compartments. The PV is extensively modified by secretion of parasite proteins, including the dense granule protein GRA5 that is specifically targeted to the delimiting membrane of the PV (PVM). We show here that GRA5 is present both in a soluble form and in hydrophobic aggregates. GRA5 is secreted as a soluble form into the PV after which it becomes stably associated with the PVM. Topological studies demonstrated that GRA5 was inserted into the PVM as a transmembrane protein with its N-terminal domain extending into the cytoplasm and its C terminus in the vacuole lumen. Deletion of 8 of the 18 hydrophobic amino acids of the single predicted transmembrane domain resulted in the failure of GRA5 to associate with the PVM; yet it remained correctly packaged in the dense granules and was secreted as a soluble protein into the PV. Collectively, these studies demonstrate that the secretory pathway inToxoplasma is unusual in two regards; it allows soluble export of proteins containing typical transmembrane domains and provides a mechanism for their insertion into a host cell membrane after secretion from the parasite.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Adit Naor ◽  
Michael W. Panas ◽  
Nicole Marino ◽  
Michael J. Coffey ◽  
Christopher J. Tonkin ◽  
...  

ABSTRACT The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins.


Sign in / Sign up

Export Citation Format

Share Document