scholarly journals Impact of the Novel Prophage ϕSA169 on Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Liang Li ◽  
Genzhu Wang ◽  
Yi Li ◽  
Patrice Francois ◽  
Arnold S. Bayer ◽  
...  

ABSTRACT Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections are life-threatening syndromes with few therapeutic options. The potential impact of bacteriophages on the persistent outcome has not been well studied. In this study, we investigated the role of a novel prophage (ϕSA169) in MRSA persistence by using a lysogen-free clinically resolving bacteremia (RB) isolate and comparing it to a derivative which was obtained by infecting the RB strain with ϕSA169, which has been lysogenized in a clinical persistent MRSA bacteremia (PB) isolate. Similar to the PB isolate, the ϕSA169-lysogenized RB strain exhibited well-defined in vitro and in vivo phenotypic and genotypic signatures related to the persistent outcome, including earlier activation of global regulators (i.e., sigB, sarA, agr RNAIII, and sae); higher expression of a critical purine biosynthesis gene, purF; and higher growth rates accompanied by lower ATP levels and vancomycin (VAN) susceptibility and stronger δ-hemolysin and biofilm formation versus its isogenic parental RB isolate. Notably, the contribution of ϕSA169 in persistent outcome with VAN treatment was confirmed in an experimental infective endocarditis model. Taken together, these results indicate the critical role of the prophage ϕSA169 in persistent MRSA endovascular infections. Further studies are needed to identify the mechanisms of ϕSA169 in mediating the persistence, as well as establishing the scope of impact, of this prophage in other PB strains. IMPORTANCE Bacteriophages are viruses that invade the bacterial host, disrupt bacterial metabolism, and cause the bacterium to lyse. Because of its remarkable antibacterial activity and unique advantages over antibiotics, for instance, bacteriophage is specific for one species of bacteria and resistance to phage is less common than resistance to antibiotics. Indeed, bacteriophage therapy for treating infections due to multidrug-resistant pathogens in humans has become a research hot spot. However, it is also worth considering that bacteriophages are transferable and could cotransfer host chromosomal genes, e.g., virulence and antimicrobial resistance genes, while lysogenizing and integrating into the bacterial chromosome (prophage), thus playing a role in bacterial evolution and virulence. In the current study, we identified a novel prophage, ϕSA169, from a clinical persistent MRSA bacteremia isolate, and we determined that ϕSA169 mediated well-defined in vitro and in vivo phenotypic and genotypic signatures related to the persistent outcome, which may represent a unique and important persistent mechanism(s).

2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Fred C. Tenover ◽  
Isabella A. Tickler ◽  
Victoria M. Le ◽  
Scott Dewell ◽  
Rodrigo E. Mendes ◽  
...  

ABSTRACT Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of Staphylococcus aureus and 2 control organisms to understand the genetic basis of genotype-phenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant S. aureus (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCCmec)-orfX junction region that led to a misclassification as methicillin-susceptible S. aureus (MSSA). One strain contained a deletion in spa, which produced a false S. aureus-negative result. A control strain of S. aureus that harbored an SCCmec element but no mecA (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCCM1 insertion. The updated Xpert MRSA/SA BC test successfully detected both spa and SCCmec variants of MRSA and correctly identified empty-cassette strains of S. aureus as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9% contained empty SCCmec cassettes, 1.6% carried SCCM1, <1% had spa deletions, and <1% contained SCCmec variants other than those with SCCM1. These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2012 ◽  
Vol 56 (12) ◽  
pp. 6291-6297 ◽  
Author(s):  
Azzam Saleh-Mghir ◽  
Oana Dumitrescu ◽  
Aurélien Dinh ◽  
Yassine Boutrad ◽  
Laurent Massias ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA) can cause osteomyelitis with severe sepsis and/or local complications in which a Panton-Valentine leukocidin (PVL) role is suspected.In vitrosub-MIC antibiotic effects on growth and PVL production by 11 PVL+MRSA strains, including the major CA-MRSA clones (USA300, including the LAC strain; USA400; and USA1000), and 11 PVL+methicillin-susceptibleS. aureus(MSSA) strains were tested in microplate culture. Time-kill analyses with ceftobiprole at its MIC were also run with LAC. Efficacies of ceftobiprole (40 mg/kg of body weight subcutaneously [s.c.] four times a day [q.i.d.]) or vancomycin (60 mg/kg intramuscularly [i.m.] twice a day [b.i.d.]) alone or combined with rifampin (10 mg/kg b.i.d.) against rabbit CA-MRSA osteomyelitis, induced by tibial injection of 3.4 × 107CFU of LAC, were compared. Treatment, started 14 days postinoculation, lasted 14 days.In vitro, 6/11 strains cultured with sub-MICs of ceftobiprole produced 1.6- to 4.8-fold more PVL than did the controls, with no link to specific clones. Rifampin decreased PVL production by all tested strains. In time-kill analyses at the LAC MIC (0.75 mg/liter), PVL production rose transiently at 6 and 8 h and then declined 2-fold at 16 h, concomitant with a 2-log10-CFU-count decrease.In vivo, the mean log10CFU/g of bone for ceftobiprole (1.44 ± 0.40) was significantly lower than that for vancomycin (2.37 ± 1.22) (P= 0.034), with 7/10 versus 5/11 bones sterilized, respectively. Combination with rifampin enhanced ceftobiprole (1.16 ± 0.04 CFU/g of bone [P= 0.056], 11/11 sterile bones) and vancomycin (1.23 ± 0.06 CFU/g [P= 0.011], 11/11 sterile bones) efficacies. Ceftobiprole bactericidal activity and the rifampin anti-PVL effect could play a role in these findings, which should be of interest for treating CA-MRSA osteomyelitis.


2012 ◽  
Vol 57 (1) ◽  
pp. 241-247 ◽  
Author(s):  
Danyelle R. Long ◽  
Julia Mead ◽  
Jay M. Hendricks ◽  
Michele E. Hardy ◽  
Jovanka M. Voyich

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) has become a major source of infection in hospitals and in the community. Increasing antibiotic resistance inS. aureusstrains has created a need for alternative therapies to treat disease. A component of the licorice rootGlycyrrhizaspp., 18β-glycyrrhetinic acid (GRA), has been shown to have antiviral, antitumor, and antibacterial activity. This investigation explores thein vitroandin vivoeffects of GRA on MRSA pulsed-field gel electrophoresis (PFGE) type USA300. GRA exhibited bactericidal activity at concentrations exceeding 0.223 μM. Upon exposure ofS. aureusto sublytic concentrations of GRA, we observed a reduction in expression of key virulence genes, includingsaeRandhla. In murine models of skin and soft tissue infection, topical GRA treatment significantly reduced skin lesion size and decreased the expression ofsaeRandhlagenes. Our investigation demonstrates that at high concentrations GRA is bactericidal to MRSA and at sublethal doses it reduces virulence gene expression inS. aureusbothin vitroandin vivo.


2011 ◽  
Vol 55 (7) ◽  
pp. 3453-3460 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACTTorezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potentin vitroactivity against Gram-positive bacteria, including methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) againstS. aureusis incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model ofS. aureusinfection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA,in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.


2016 ◽  
Vol 60 (9) ◽  
pp. 5349-5356 ◽  
Author(s):  
Myriam K. S. Ballo ◽  
Sami Rtimi ◽  
César Pulgarin ◽  
Nancy Hopf ◽  
Aurélie Berthet ◽  
...  

ABSTRACTIn this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistantStaphylococcus aureus(MRSA) infectionin vitroandin vivo. Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering.In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 104to 108CFU/ml.In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (107CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured.In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 104to 107CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization;P< 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%;P< 0.005). Ag/Cu-coating protection diminished with 108CFU/ml in both PBS and plasma (50 to 100% colonization).In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively;P= 0.16) and bacteremia (31% versus 68%, respectively;P< 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu cathetersin vivowas due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces.


2012 ◽  
Vol 56 (12) ◽  
pp. 6192-6200 ◽  
Author(s):  
Shrenik Mehta ◽  
Christopher Singh ◽  
Konrad B. Plata ◽  
Palas K. Chanda ◽  
Arundhati Paul ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAPr) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the “seesaw effect.” Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAPrMRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAPs)/DaprMRSA strains originally obtained from patients that failed DAP monotherapy. Bothin vitro(MIC, synergy-kill curve) andin vivo(wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAPrMRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease ofin vitromutant selection was observed when DAPsMRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAPrvariants. In summary, our data show that the DAP–β-lactam combination may significantly enhance both thein vitroandin vivoefficacy of anti-MRSA therapeutic options against DAPrMRSA infections and represent an option in preventing DAPrselection in persistent or refractory MRSA infections.


2012 ◽  
Vol 80 (7) ◽  
pp. 2382-2389 ◽  
Author(s):  
Christopher P. Montgomery ◽  
Susan Boyle-Vavra ◽  
Agnès Roux ◽  
Kazumi Ebine ◽  
Abraham L. Sonenshein ◽  
...  

ABSTRACTTheStaphylococcus aureusglobal regulator CodY responds to nutrient availability by controlling the expression of target genes.In vitro, CodY represses the transcription of virulence genes, but it is not known if CodY also represses virulencein vivo. The dominant community-associated methicillin-resistantS. aureus(CA-MRSA) clone, USA300, is hypervirulent and has increased transcription of global regulators and virulence genes; these features are reminiscent of a strain defective in CodY. Sequence analysis revealed, however, that thecodYgenes of USA300 and other sequencedS. aureusisolates are not significantly different from thecodYgenes in strains known to have active CodY.codYwas expressed in USA300, as well as in other pulsotypes assessed. Deletion ofcodYfrom a USA300 clinical isolate resulted in modestly increased expression of the global regulatorsagrandsaeRS, as well as the gene encoding the toxin alpha-hemolysin (hla). A substantial increase (>30-fold) in expression of thelukF-PVgene, encoding part of the Panton-Valentine leukocidin (PVL), was observed in thecodYmutant. All of these expression differences were reversed by complementation with a functionalcodYgene. Moreover, purified CodY protein bound upstream of thelukSF-PVoperon, indicating that CodY directly represses expression oflukSF-PV. Deletion ofcodYincreased the virulence of USA300 in necrotizing pneumonia and skin infection. Interestingly, deletion oflukSF-PVfrom thecodYmutant did not attenuate virulence, indicating that the hypervirulence of thecodYmutant was not explained by overexpression of PVL. These results demonstrate that CodY is active in USA300 and that CodY-mediated repression restrains the virulence of USA300.


2015 ◽  
Vol 59 (6) ◽  
pp. 3252-3256 ◽  
Author(s):  
Liana C. Chan ◽  
Li Basuino ◽  
Etyene C. Dip ◽  
Henry F. Chambers

ABSTRACTTedizolid, the active component of the prodrug tedizolid phosphate, is a novel oxazolidinone that is approximately 4 times more active by weight than linezolid againstStaphylococcus aureusin vitro. Thein vivoefficacy of tedizolid phosphate (15 mg/kg body weight intravenous [i.v.] twice a day [b.i.d.]) was compared to those of vancomycin (30 mg/kg i.v. b.i.d.) and daptomycin (18 mg/kg i.v. once a day [q.d.]) in a rabbit model of aortic valve endocarditis (AVE) caused by methicillin-resistantS. aureusstrain COL (infection inoculum of 107CFU). Median vegetation titers of daptomycin-treated rabbits were significantly lower than those of rabbits treated with tedizolid phosphate (15 mg/kg b.i.d.) (P= 0.016), whereas titers for vancomycin-treated compared to tedizolid-treated rabbits were not different (P= 0.984). The numbers of organisms in spleen and kidney tissues were similar for all treatment groups. A dose-ranging experiment was performed with tedizolid phosphate (2, 4, and 8 mg/kg b.i.d.) compared to vancomycin (30 mg/kg b.i.d.), using a higher infecting inoculum (108CFU) to determine the lowest efficacious dose of tedizolid phosphate. Tedizolid phosphate (2 mg/kg) (equivalent to 60% of the area under the concentration-time curve from 0 to 24 h (AUC0–24) for the human 200-mg dose approved by the U.S. Food and Drug Administration) was not efficacious. Tedizolid phosphate at 4 mg/kg (equivalent to 75% of the AUC0–24for the human 400-mg dose) and 8 mg/kg produced lower vegetation titers than the control, but neither was as efficacious as vancomycin.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Yu Yamashita ◽  
Kentaro Nagaoka ◽  
Hiroki Kimura ◽  
Masaru Suzuki ◽  
Satoshi Konno ◽  
...  

ABSTRACT The use of macrolides against pneumonia has been reported to improve survival; however, little is known about their efficacy against methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. In this study, we investigated the effect of azithromycin (AZM) and compared it with that of vancomycin (VCM) and daptomycin (DAP) in a murine model of MRSA pneumonia. Mice were infected with MRSA by intratracheal injection and then treated with AZM, VCM, or DAP. The therapeutic effect of AZM, in combination or not with the other drugs, was compared in vivo, whereas the effect of AZM on MRSA growth and toxin mRNA expression was evaluated in vitro. In vivo, the AZM-treated group showed significantly longer survival and fewer bacteria in the lungs 24 h after infection than the untreated group, as well as the other anti-MRSA drug groups. No significant decrease in cytokine levels (interleukin-6 [IL-6] and macrophage inflammatory protein-2 [MIP-2]) in bronchoalveolar lavage fluid or toxin expression levels (α-hemolysin [Hla] and staphylococcal protein A [Spa]) was observed following AZM treatment. In vitro, AZM suppressed the growth of MRSA in late log phase but not in stationary phase. No suppressive effect against toxin production was observed following AZM treatment in vitro. In conclusion, contrary to the situation in vitro, AZM was effective against MRSA growth in vivo in our pneumonia model, substantially improving survival. The suppressive effect on MRSA growth at the initial stage of pneumonia could underlie the potential mechanism of AZM action against MRSA pneumonia.


Sign in / Sign up

Export Citation Format

Share Document