scholarly journals Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant Staphylococcus aureus

mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Michael J. Salazar ◽  
Henrique Machado ◽  
Nicholas A. Dillon ◽  
Hannah Tsunemoto ◽  
Richard Szubin ◽  
...  

ABSTRACT Antimicrobial susceptibility testing standards driving clinical decision-making have centered around the use of cation-adjusted Mueller-Hinton broth (CA-MHB) as the medium with the notion of supporting bacterial growth, without consideration of recapitulating the in vivo environment. However, it is increasingly recognized that various medium conditions have tremendous influence on antimicrobial activity, which in turn may have major implications on the ability of in vitro susceptibility assays to predict antibiotic activity in vivo. To elucidate differential growth optimization and antibiotic resistance mechanisms, adaptive laboratory evolution was performed in the presence or absence of the antibiotic nafcillin with methicillin-resistant Staphylococcus aureus (MRSA) TCH1516 in either (i) CA-MHB, a traditional bacteriological nutritionally rich medium, or (ii) Roswell Park Memorial Institute (RPMI), a medium more reflective of the in vivo host environment. Medium adaptation analysis showed an increase in growth rate in RPMI, but not CA-MHB, with mutations in apt, adenine phosphoribosyltransferase, and the manganese transporter subunit, mntA, occurring reproducibly in parallel replicate evolutions. The medium-adapted strains showed no virulence attenuation. Continuous exposure of medium-adapted strains to increasing concentrations of nafcillin led to medium-specific evolutionary strategies. Key reproducibly occurring mutations were specific for nafcillin adaptation in each medium type and did not confer resistance in the other medium environment. Only the vraRST operon, a regulator of membrane- and cell wall-related genes, showed mutations in both CA-MHB- and RPMI-evolved strains. Collectively, these results demonstrate the medium-specific genetic adaptive responses of MRSA and establish adaptive laboratory evolution as a platform to study clinically relevant resistance mechanisms. IMPORTANCE The ability of pathogens such as Staphylococcus aureus to evolve resistance to antibiotics used in the treatment of infections has been an important concern in the last decades. Resistant acquisition usually translates into treatment failure and puts patients at risk of unfavorable outcomes. Furthermore, the laboratory testing of antibiotic resistance does not account for the different environment the bacteria experiences within the human body, leading to results that do not translate into the clinic. In this study, we forced methicillin-resistant S. aureus to develop nafcillin resistance in two different environments, a laboratory environment and a physiologically more relevant environment. This allowed us to identify genetic changes that led to nafcillin resistance under both conditions. We concluded that not only does the environment dictate the evolutionary strategy of S. aureus to nafcillin but also that the evolutionary strategy is specific to that given environment.

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


2011 ◽  
Vol 55 (11) ◽  
pp. 5325-5330 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Antoine Deslandes ◽  
Astrid Rey ◽  
Laurent Fraisse ◽  
...  

ABSTRACTCationic antimicrobial peptides (CAPs) play important roles in host immune defenses. Plectasin is a defensin-like CAP isolated from the saprophytic fungusPseudoplectania nigrella. NZ2114 is a novel variant of plectasin with potent activity against Gram-positive bacteria. In this study, we investigated (i) thein vivopharmacokinetic and pharmacodynamic (PK/PD) characteristics of NZ2114 and (ii) thein vivoefficacy of NZ2114 in comparison with those of two conventional antibiotics, vancomycin or daptomycin, in an experimental rabbit infective endocarditis (IE) model due to a methicillin-resistantStaphylococcus aureus(MRSA) strain (ATCC 33591). All NZ2114 regimens (5, 10, and 20 mg/kg of body weight, intravenously [i.v.], twice daily for 3 days) significantly decreased MRSA densities in cardiac vegetations, kidneys, and spleen versus those in untreated controls, except in one scenario (5 mg/kg, splenic MRSA counts). The efficacy of NZ2114 was clearly dose dependent in all target tissues. At 20 mg/kg, NZ2114 showed a significantly greater efficacy than vancomycin (P< 0.001) and an efficacy similar to that of daptomycin. Of importance, only NZ2114 (in 10- and 20-mg/kg regimens) prevented posttherapy relapse in cardiac vegetations, kidneys, and spleen, while bacterial counts in these target tissues continued to increase in vancomycin- and daptomycin-treated animals. Thesein vivoefficacies were equivalent and significantly correlated with three PK indices investigated:fCmax/MIC (the maximum concentration of the free, unbound fraction of a drug in serum divided by the MIC),fAUC/MIC (where AUC is the area under the concentration-time curve), andf%T>MIC(%T>MICis the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions), as analyzed by a sigmoid maximum-effect (Emax) model (R2> 0.69). The superior efficacy of NZ2114 in this MRSA IE model suggests the potential for further development of this compound for treating serious MRSA infections.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Henrique Machado ◽  
Liam L. Weng ◽  
Nicholas Dillon ◽  
Yara Seif ◽  
Michelle Holland ◽  
...  

ABSTRACT Staphylococcus aureus is a Gram-positive pathogenic bacterium that colonizes an estimated one-third of the human population and can cause a wide spectrum of disease, ranging from superficial skin infections to life-threatening sepsis. The adaptive mechanisms that contribute to the success of this pathogen remain obscure partially due to a lack of knowledge of its metabolic requirements. Systems biology approaches can be extremely useful in predicting and interpreting metabolic phenotypes; however, such approaches rely on a chemically defined minimal medium as a basis to investigate the requirements of the cell. In this study, a chemically defined minimal medium formulation, termed synthetic minimal medium (SMM), was investigated and validated to support growth of three S. aureus strains: LAC and TCH1516 (USA300 lineage), as well as D592 (USA100 lineage). The formulated SMM was used in an adaptive laboratory evolution experiment to probe the various mutational trajectories of all three strains leading to optimized growth capabilities. The evolved strains were phenotypically characterized for their growth rate and antimicrobial susceptibility. Strains were also resequenced to examine the genetic basis for observed changes in phenotype and to design follow-up metabolite supplementation assays. Our results reveal evolutionary trajectories that arose from strain-specific metabolic requirements. SMM and the evolved strains can also serve as important tools to study antibiotic resistance phenotypes of S. aureus. IMPORTANCE As researchers try to understand and combat the development of antibiotic resistance in pathogens, there is a growing need to thoroughly understand the physiology and metabolism of the microbes. Staphylococcus aureus is a threatening pathogen with increased antibiotic resistance and well-studied virulence mechanisms. However, the adaptive mechanisms used by this pathogen to survive environmental stresses remain unclear, mostly due to the lack of information about its metabolic requirements. Defining the minimal metabolic requirements for S. aureus growth is a first step toward unraveling the mechanisms by which it adapts to metabolic stresses. Here, we present the development of a chemically defined minimal medium supporting growth of three S. aureus strains, and we reveal key genetic mutations contributing to improved growth in minimal medium.


2012 ◽  
Vol 56 (12) ◽  
pp. 6291-6297 ◽  
Author(s):  
Azzam Saleh-Mghir ◽  
Oana Dumitrescu ◽  
Aurélien Dinh ◽  
Yassine Boutrad ◽  
Laurent Massias ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA) can cause osteomyelitis with severe sepsis and/or local complications in which a Panton-Valentine leukocidin (PVL) role is suspected.In vitrosub-MIC antibiotic effects on growth and PVL production by 11 PVL+MRSA strains, including the major CA-MRSA clones (USA300, including the LAC strain; USA400; and USA1000), and 11 PVL+methicillin-susceptibleS. aureus(MSSA) strains were tested in microplate culture. Time-kill analyses with ceftobiprole at its MIC were also run with LAC. Efficacies of ceftobiprole (40 mg/kg of body weight subcutaneously [s.c.] four times a day [q.i.d.]) or vancomycin (60 mg/kg intramuscularly [i.m.] twice a day [b.i.d.]) alone or combined with rifampin (10 mg/kg b.i.d.) against rabbit CA-MRSA osteomyelitis, induced by tibial injection of 3.4 × 107CFU of LAC, were compared. Treatment, started 14 days postinoculation, lasted 14 days.In vitro, 6/11 strains cultured with sub-MICs of ceftobiprole produced 1.6- to 4.8-fold more PVL than did the controls, with no link to specific clones. Rifampin decreased PVL production by all tested strains. In time-kill analyses at the LAC MIC (0.75 mg/liter), PVL production rose transiently at 6 and 8 h and then declined 2-fold at 16 h, concomitant with a 2-log10-CFU-count decrease.In vivo, the mean log10CFU/g of bone for ceftobiprole (1.44 ± 0.40) was significantly lower than that for vancomycin (2.37 ± 1.22) (P= 0.034), with 7/10 versus 5/11 bones sterilized, respectively. Combination with rifampin enhanced ceftobiprole (1.16 ± 0.04 CFU/g of bone [P= 0.056], 11/11 sterile bones) and vancomycin (1.23 ± 0.06 CFU/g [P= 0.011], 11/11 sterile bones) efficacies. Ceftobiprole bactericidal activity and the rifampin anti-PVL effect could play a role in these findings, which should be of interest for treating CA-MRSA osteomyelitis.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Catarina Milheiriço ◽  
Hermínia de Lencastre ◽  
Alexander Tomasz

ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant.


2012 ◽  
Vol 57 (1) ◽  
pp. 241-247 ◽  
Author(s):  
Danyelle R. Long ◽  
Julia Mead ◽  
Jay M. Hendricks ◽  
Michele E. Hardy ◽  
Jovanka M. Voyich

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) has become a major source of infection in hospitals and in the community. Increasing antibiotic resistance inS. aureusstrains has created a need for alternative therapies to treat disease. A component of the licorice rootGlycyrrhizaspp., 18β-glycyrrhetinic acid (GRA), has been shown to have antiviral, antitumor, and antibacterial activity. This investigation explores thein vitroandin vivoeffects of GRA on MRSA pulsed-field gel electrophoresis (PFGE) type USA300. GRA exhibited bactericidal activity at concentrations exceeding 0.223 μM. Upon exposure ofS. aureusto sublytic concentrations of GRA, we observed a reduction in expression of key virulence genes, includingsaeRandhla. In murine models of skin and soft tissue infection, topical GRA treatment significantly reduced skin lesion size and decreased the expression ofsaeRandhlagenes. Our investigation demonstrates that at high concentrations GRA is bactericidal to MRSA and at sublethal doses it reduces virulence gene expression inS. aureusbothin vitroandin vivo.


2012 ◽  
Vol 56 (5) ◽  
pp. 2342-2346 ◽  
Author(s):  
Pamela R. Tessier ◽  
Rebecca A. Keel ◽  
Mao Hagihara ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTThe antibacterial efficacies of tedizolid phosphate (TZD), linezolid, and vancomycin regimens simulating human exposures at the infection site against methicillin-resistantStaphylococcus aureus(MRSA) were compared in anin vivomouse pneumonia model. Immunocompetent BALB/c mice were orally inoculated with one of three strains of MRSA and subsequently administered 20 mg/kg TZD every 24 hours (q24h), 120 mg/kg linezolid q12h, or 25 mg/kg vancomycin q12h over 24 h. These regimens produced epithelial lining fluid exposures comparable to human exposures observed following intravenous regimens of 200 mg TZD q24h, 600 mg linezolid q12h, and 1 g vancomycin q12h. The differences in CFU after 24 h of treatment were compared between control and treatment groups. Vehicle-dosed control groups increased in bacterial density an average of 1.1 logs. All treatments reduced the bacterial density at 24 h with an average of 1.2, 1.6, and 0.1 logs for TZD, linezolid, and vancomycin, respectively. The efficacy of TZD versus linezolid regimens against the three MRSA isolates was not statistically different (P> 0.05), although both treatments were significantly different from controls. In contrast, the vancomycin regimen was significantly different from TZD against one MRSA isolate and from linezolid against all isolates. The vancomycin regimen was less protective than either the TZD or linezolid regimens, with overall survival of 61.1% versus 94.7% or 89.5%, respectively. At human simulated exposures to epithelial lining fluid, vancomycin resulted in minimal reductions in bacterial counts and higher mortality compared to those of either TZD or linezolid. TZD and linezolid showed similar efficacies in this MRSA pneumonia model.


Sign in / Sign up

Export Citation Format

Share Document