REFINING THE LATE HOLOCENE OUTLET PALEOHYDROGRAPH FOR LAKE MICHIGAN-HURON WITH THE IPPERWASH PALEOHYDROGRAPH OR CLOSEST AND MOST COMPLETE STRANDPLAIN OF BEACH RIDGES TO THE OUTLET

2020 ◽  
Author(s):  
Sean Morrison ◽  
◽  
John W. Johnston ◽  
Kenneth Lepper
1996 ◽  
Vol 45 (3) ◽  
pp. 321-326 ◽  
Author(s):  
Paul A. Delcourt ◽  
William H. Petty ◽  
Hazel R. Delcourt

AbstractA radiocarbon-dated series of 75 beach ridges, formed at regular intervals averaging 72 yr over the past 5400 yr, provides further support for the existence of a 70-yr oscillation in Northern Hemisphere climate, postulated recently from instrument data representing less than two cycles of this climate oscillation. Results from this study lend support to the interpretation that internal variations in the ocean–atmosphere system are an important factor in climate fluctuations on a decadal–centennial time scale. A temperature oscillation with a period of about 70 yr has been a previously unrecognized but fundamental part of the global climate system since at least the middle Holocene.


1995 ◽  
Vol 44 (2) ◽  
pp. 181-189 ◽  
Author(s):  
John Lichter

AbstractA sequence of northern Lake Michigan beach ridges records lake-level fluctuations that are probably related to changes in late Holocene climate. Historically, episodes of falling and low lake level associated with regional drought led to the formation of dune-capped beach ridges. The timing of prehistoric ridge formation, estimated by radiocarbon dating of plant macrofossils from early-successional dune species, shows that return periods of inferred drought, averaged for time intervals of 100 to 480 yr, ranged between 17 and 135 yr per drought during the last 2400 yr. In five of ten of these time intervals, the average return period ranged between 17 and 22 yr per drought. These intervals of frequent ridge formation and drought were associated with the development of parabolic dunes, which is indicative of high lake level and moist climate. This seeming paradox suggests that unusually moist decades alternated with unusually dry decades during these time intervals. Regional water balance probably varied less during the time intervals when ridges formed less often and the lake produced no evidence of high level.


2012 ◽  
Vol 326-328 ◽  
pp. 140-153 ◽  
Author(s):  
Toru Tamura ◽  
Yoshiki Saito ◽  
Mark D. Bateman ◽  
V. Lap Nguyen ◽  
T.K. Oanh Ta ◽  
...  

1997 ◽  
Vol 48 (1) ◽  
pp. 137-140 ◽  
Author(s):  
John Lichter

Strandplains of shore-parallel beach ridges bordering the Great Lakes are valuable for reconstructing histories of climate-related lake-level fluctuations. However, imprecise radiocarbon dates of ridge formation have frustrated development of dependable chronologies from which information about variation in the frequency of ridge formation and inferred climate fluctuations can be obtained. The resolution and precision of radiocarbon chronologies can be improved with AMS 14C dates of roots and rhizomes of plant species associated with the formation and growth of the sand-dune caps of breach ridges. These dates reliably estimate the timing of shore progradation when the base of the previously established beach ridge becomes inundated by the water table. An AMS radiocarbon chronology of beach-ridge formation in northern Lake Michigan shows that information about variation in the frequency of ridge formation is important for paleoclimatic interpretation.


2005 ◽  
Vol 64 (2) ◽  
pp. 257-263 ◽  
Author(s):  
Richard W. Briggs ◽  
Steven G. Wesnousky ◽  
Kenneth D. Adams

AbstractShoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.


2000 ◽  
Vol 54 (3) ◽  
pp. 414-422 ◽  
Author(s):  
Walter L. Loope ◽  
Alan F. Arbogast

Outcrops of buried soils on lake-plains and glacial headlands along Lake Michigan's eastern shore suggest that periodic dune-building has occurred there after relatively long (≥100 yr) periods of low sand supply. We located, described, and radiocarbon dated 75 such buried soils that crop out in 32 coastal dune fields beside the lake. We assume that peaks in probability distributions of calibrated 14C ages obtained from wood, charcoal, and other organic matter from buried A horizons approximate the time of soil burial by dunes. Plotted against a late Holocene lake-level curve for Lake Michigan, these peaks are closely associated with many ∼150-yr lake highstands previously inferred from beach ridge studies. Intervening periods of lower lake levels and relative sand starvation apparently permitted forestation and soil development at the sites we studied. While late Holocene lake-level change led to development and preservation of prominent foredunes along the southern and southwestern shores of Lake Michigan, the modern dune landscape of the eastern shore is dominated by perched dunes formed during ∼150-yr lake highstands over the past 1500 yr.


The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Martin Köhler ◽  
James Shulmeister ◽  
Nicholas R Patton ◽  
Tammy M Rittenour ◽  
Sarah McSweeney ◽  
...  

This paper presents a reconstruction of the Holocene evolution of the Inskip Peninsula in SE Queensland. The peninsula links two major dune fields, the Cooloola Sand Mass to the south and K’gari (Fraser Island) to the north. Geomorphic features of this peninsula include remnant parabolic dunes, numerous beach ridges with foredunes, and a series of spits. Together these features provide insight into Holocene coastal evolution and changing marine conditions. A remnant beach ridge/foredune complex at the northern portion of Inskip may have been connected to K’gari and a river/tidal channel near Rainbow Beach township which separated it from the Cooloola Sand Mass to the south. This channel avulsed northward in the early mid-Holocene (after 8.8 ka) with spit development from the south. This was followed by a phase of beach-ridge/foredune complex development that started by ~6.7 ka. Stratigraphic evidence from the highest and best developed parabolic dunes in the northern portion of Inskip Peninsula indicates dune development from the mid-Holocene beach complex by 4.8 ka. Beach ridges with foredunes continued to prograde but notably declined in size during the late-Holocene. In the latest Holocene (<4.8 ka) many of the late-Holocene beach ridges/foredune complexes have been truncated by a re-orientation of the shoreline and longshore sediment transport has promoted the growth of the modern spit at the northern end of the peninsula. Erosive and longshore processes continue to be highly active because of tidal interactions between Great Sandy Strait and the Coral Sea. This detailed study of Inskip Peninsula’s evolution aids significantly in future coastal management decisions, and provides evidence for World Heritage Area extension for the Cooloola Sand Mass, including the incorporation of Inskip Peninsula itself. It also contributes to the global understanding to coastal evolution in an area of strong wave and tidal interaction.


Sign in / Sign up

Export Citation Format

Share Document