Dominance of an ∼150-Year Cycle of Sand-Supply Change in Late Holocene Dune-Building along the Eastern Shore of Lake Michigan

2000 ◽  
Vol 54 (3) ◽  
pp. 414-422 ◽  
Author(s):  
Walter L. Loope ◽  
Alan F. Arbogast

Outcrops of buried soils on lake-plains and glacial headlands along Lake Michigan's eastern shore suggest that periodic dune-building has occurred there after relatively long (≥100 yr) periods of low sand supply. We located, described, and radiocarbon dated 75 such buried soils that crop out in 32 coastal dune fields beside the lake. We assume that peaks in probability distributions of calibrated 14C ages obtained from wood, charcoal, and other organic matter from buried A horizons approximate the time of soil burial by dunes. Plotted against a late Holocene lake-level curve for Lake Michigan, these peaks are closely associated with many ∼150-yr lake highstands previously inferred from beach ridge studies. Intervening periods of lower lake levels and relative sand starvation apparently permitted forestation and soil development at the sites we studied. While late Holocene lake-level change led to development and preservation of prominent foredunes along the southern and southwestern shores of Lake Michigan, the modern dune landscape of the eastern shore is dominated by perched dunes formed during ∼150-yr lake highstands over the past 1500 yr.

2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


1996 ◽  
Vol 45 (3) ◽  
pp. 321-326 ◽  
Author(s):  
Paul A. Delcourt ◽  
William H. Petty ◽  
Hazel R. Delcourt

AbstractA radiocarbon-dated series of 75 beach ridges, formed at regular intervals averaging 72 yr over the past 5400 yr, provides further support for the existence of a 70-yr oscillation in Northern Hemisphere climate, postulated recently from instrument data representing less than two cycles of this climate oscillation. Results from this study lend support to the interpretation that internal variations in the ocean–atmosphere system are an important factor in climate fluctuations on a decadal–centennial time scale. A temperature oscillation with a period of about 70 yr has been a previously unrecognized but fundamental part of the global climate system since at least the middle Holocene.


2004 ◽  
Vol 41 (11) ◽  
pp. 1385-1400 ◽  
Author(s):  
Alan F Arbogast ◽  
Randall J Schaetzl ◽  
Joseph P Hupy ◽  
Edward C Hansen

A very prominent buried soil crops out in coastal sand dunes along an ~200 km section of the southeastern shore of Lake Michigan. This study is the first to investigate the character of this soil — informally described here as the Holland Paleosol — by focusing on six sites from Indiana Dunes National Lakeshore north to Montague, Michigan. Most dunes in this region are large (>40 m high) and contain numerous buried soils that indicate periods of reduced sand supply and comcomitant stabilization. Most of these soils are buried in the lower part of the dunes and are thin Entisols. The soil described here, in contrast, is relatively well developed, is buried in the upper part of many dunes, and formed by podzolization under forest vegetation. Radiocarbon dates indicate that this soil formed between ~3000 and 300 calibrated years BP. Pedons of the Holland Paleosol range in development from thick Entisols (Regosols) with A–Bw–BC–C horizonation to weakly developed Spodosols (Podzols) with A–E–Bs–Bw–BC–C profiles. Many profiles have overthickened and (or) stratified A horizons, indicative of slow and episodic burial. Differences in development are mainly due to paleolandscape position and variations in paleoclimate among the sites. The Holland Paleosol is significant because it represents a relatively long period of landscape stability in coastal dunes over a broad (200 km) area. This period of stability was concurrent with numerous fluctuations in Lake Michigan. Given the general sensitivity of coastal dunes to prehistoric lake-level fluctuations, the soil may reflect a time when the lake shore was farther west than it is today. The Holland Paleosol would probably qualify as a formal pedostratigraphic unit if it were buried by a formal lithostratgraphic or allostratigraphic unit.


1970 ◽  
Vol 7 (2) ◽  
pp. 665-675 ◽  
Author(s):  
C. F. M. Lewis

Differential postglacial uplifting in the Huron basin has long been recognized from the observed deformation of raised shorelines, particularly those associated with the Algonquin series of glacial lakes (12 000–10 500 years B.P.) and the postglacial Nipissing Great Lakes. From Nipissing time, about 5500 years B.P., to the present, lake levels apparently fell in the northern Huron – Georgian Bay region as the basin upwarped and the outlet was downcut.Recent emergence of Manitoulin Island in northern Lake Huron was inferred, independently of raised shoreline data, from sediment sequences in a series of 3 beach sites and 8 small lake basins at various altitudes up to 20 m above Lake Huron. Organic sediment (gyttja) in each lake overlies clastic inorganic sand or silt, with the contact horizon demarcating the isolation of each basin as its threshold emerged from the high-energy littoral environment of Lake Huron. Radiocarbon dates and elevations of the basal gyttja sediments and organic beach sediments suggest uplift at a constant rate of 2.2 mm/year over the past 5000 years. This rate refers to Little Current, Ontario, and is for movement relative to the outlet area of Huron basin at Sarnia, Ontario. The value agrees with basin tilting inferred from lake level gauge observations made during the last 100 years.


2021 ◽  
Author(s):  
Douglas A. Wilcox ◽  
John Bateman ◽  
Kurt Kowalski ◽  
James Meeker ◽  
Nicole Dunn

Abstract Water-level fluctuations are critical in maintaining the diversity of plant communities in Great Lakes wetlands. Sedge/grass meadows are especially sensitive to such fluctuations. We conducted vegetation sampling in a sedge/grass-dominated Lake Michigan drowned-river-mouth wetland in 1995, 2002, and 2010 that followed high lake levels in 1986 and 1997. We also conducted photointerpretation studies in 16 years dating back to 1965 to include responses to high lake level in 1952 and 1974. Topographic/bathymetric data were collected to assess their influence on areal extent of sedge/grass meadow. Dominant species in short emergent and submersed/floating plant communities changed with water availability from 1995 to extreme low lake levels in 2002 and 2010. Sedge/grass meadow was dominated by Calamagrostis canadensis and Carex stricta in all years sampled, but Importance Values differed among years partly due to sampling in newly exposed areas. Photointerpretation studies showed a significant relation between percent of wetland in sedge/grass meadow and summer lake level, as well as the number of years since an extreme high lake level. From the topographic/bathymetric map created, we calculated the cumulative area above each 0.2-m contour to determine the percent of wetland dewatered in select years following extreme high lake levels. When compared with percent sedge/grass meadow in those years, relative changes in both predicted land surface and sedge/grass meadow demonstrated that accuracy of lake level as a predictor of area of sedge/grass meadow is dependent on topography/bathymetry. Our results regarding relations of plant-community response to hydrology are applicable to other Great Lakes wetlands.


1994 ◽  
Vol 20 (1) ◽  
pp. 73-92 ◽  
Author(s):  
Steven M. Colman ◽  
Richard M. Forester ◽  
Richard L. Reynolds ◽  
Donald S. Sweetkind ◽  
John W. King ◽  
...  

2011 ◽  
Vol 59 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Taner Cengiz

Periodic structures of Great Lakes levels using wavelet analysisThe recently advanced approach of wavelet transforms is applied to the analysis of lake levels. The aim of this study is to investigate the variability of lake levels in four lakes in the Great Lakes region where the method of continuous wavelet transform and global spectra are used. The analysis of lake-level variations in the time-scale domain incorporates the method of continuous wavelet transform and the global spectrum. Four lake levels, Lake Erie, Lake Michigan, Lake Ontario, and Lake Superior in the Great Lakes region were selected for the analysis. Monthly lake level records at selected locations were analyzed by wavelet transform for the period 1919 to 2004. The periodic structures of the Great Lakes levels revealed a spectrum between the 1-year and 43- year scale level. It is found that major lake levels periodicities are generally the annual cycle. Lake Michigan levels show different periodicities from Lake Erie and Lake Superior and Lake Ontario levels. Lake Michigan showed generally long-term (more than 10 years) periodicities. It was shown that the Michigan Lake shows much stronger influences of inter-annual atmospheric variability than the other three lakes. The other result was that some interesting correlations between global spectrums of the lake levels from the same climatic region were found.


1995 ◽  
Vol 44 (2) ◽  
pp. 190-199 ◽  
Author(s):  
John B. Anderton ◽  
Walter L. Loope

AbstractA stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.


Sign in / Sign up

Export Citation Format

Share Document