Detrital zircon geochronology of the Aycross Formation (Eocene) near Togwotee Pass, western Wind River Basin, Wyoming

2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.

2011 ◽  
Vol 48 (2) ◽  
pp. 515-541 ◽  
Author(s):  
Yvon Lemieux ◽  
Thomas Hadlari ◽  
Antonio Simonetti

U–Pb ages have been determined on detrital zircons from the Upper Devonian Imperial Formation and Upper Devonian – Lower Carboniferous Tuttle Formation of the northern Canadian Cordilleran miogeocline using laser ablation – multicollector – inductively coupled plasma – mass spectrometry. The results provide insights into mid-Paleozoic sediment dispersal in, and paleogeography of, the northern Canadian Cordillera. The Imperial Formation yielded a wide range of detrital zircon dates; one sample yielded dominant peaks at 1130, 1660, and 1860 Ma, with smaller mid-Paleozoic (∼430 Ma), Neoproterozoic, and Archean populations. The easternmost Imperial Formation sample yielded predominantly late Neoproterozoic – Cambrian zircons between 500 and 700 Ma, with lesser Mesoproterozoic and older populations. The age spectra suggest that the samples were largely derived from an extensive region of northwestern Laurentia, including the Canadian Shield, igneous and sedimentary provinces of Canada’s Arctic Islands, and possibly the northern Yukon. The presence of late Neoproterozoic – Cambrian zircon, absent from the Laurentian magmatic record, indicate that a number of grains were likely derived from an exotic source region, possibly including Baltica, Siberia, or Arctic Alaska – Chukotka. In contrast, zircon grains from the Tuttle Formation show a well-defined middle Paleoproterozoic population with dominant relative probability peaks between 1850 and 1950 Ma. Additional populations in the Tuttle Formation are mid-Paleozoic (∼430 Ma), Mesoproterozoic (1000–1600 Ma), and earlier Paleoproterozoic and Archean ages (>2000 Ma). These data lend support to the hypothesis that the influx of sediments of northerly derivation that supplied the northern miogeocline in Late Devonian time underwent an abrupt shift to a source of predominantly Laurentian affinity by the Mississippian.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2007 ◽  
Vol 44 (12) ◽  
pp. 1675-1693 ◽  
Author(s):  
Y Lemieux ◽  
R I Thompson ◽  
P Erdmer ◽  
A Simonetti ◽  
R A Creaser

The Kootenay Arc has been interpreted as the western limit of autochthonous continental margin strata, west of which occur Paleozoic to Mesozoic rocks of uncertain paleogeographic origin. Recent mapping has demonstrated stratigraphic linkage between the Kootenay Arc strata and rocks farther west. A U–Pb study of detrital zircons using laser ablation – multicollector – inductively coupled plasma – mass spectrometry (LA–MC–ICP–MS) was undertaken in the upper succession of the Monashee complex mantling gneiss and in mid-Paleozoic strata of the Chase Formation exposed in the northern Kootenay Arc area and adjacent outboard strata. The predominance of >1.75 Ga zircon matches well with basement domains of the western buried North American craton and indicates that most of the grains were derived from a source of North American affinity. Zircon between 1.00 and 1.30 Ga demonstrates a Neoproterozoic source of possible “Grenville” affinity. Additional populations in the Chase Formation are mid-Paleozoic, Ediacaran, 800–1000 Ma, and 1400–1750 Ma. We interpret them to have been derived from exposed sources of Proterozoic continental crust and (or) proximal late Neoproterozoic and middle Paleozoic magmatic sources. The investigated Proterozoic and Paleozoic successions confirm sedimentologic and depositional relationships with the ancestral North American margin, and as such are interpreted to represent outboard extensions of the Cordilleran miogeoclinal succession.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Xianghong Meng ◽  
Yu Zhang ◽  
Duoyun Wang ◽  
Xue Zhang

AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.


2017 ◽  
Vol 54 (2) ◽  
pp. 86-103 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Stuart Kenderes

We report the results of analyses of detrital zircon from the middle Cambrian Flathead Sandstone from four locations in Park County, WY. The Flathead U-Pb zircon age spectra (n=355) includes one peak at 2702–3345 Ma (95%) and two small age peaks at 1784 Ma (4%) and ∼1830 Ma (1%). Regional paleocurrent data for the Flat-head indicate sediment transport from east to west but the dominant Archean detrital zircons in our sample suite indicates a proximal source in structurally and topographically high Wyoming Province crust. The Archean ages are consistent with the >3.0 Ga fraction being derived from basement rocks present in the northern Beartooth Range and areas further to the west. The 2.8–3.0 Ga grains were derived from the Beartooth-Bighorn magmatic zone, which directly underlies and extends to the south and east of these Flathead sampling localities. The 1.7–1.8 Ga grains were derived from 100s of km to the south and east, in the Cheyenne Belt or more distal Yavapai Province rocks. This 1.7–1.8 Ga crust was uplifted along the Transcontinental Arch during late Precambrian time. The Transcontinental Arch, and perhaps the Midcontinent Rift further to the east as well, prevented easterly-sourced (i.e. Grenville) zircons from reaching the Wyoming Sauk shoreline.


Author(s):  
Jared T. Gooley ◽  
Marty Grove ◽  
Stephan A. Graham

ABSTRACT The Mount Diablo region has been located within a hypothesized persistent corridor for clastic sediment delivery to the central California continental margin over the past ~100 m.y. In this paper, we present new detrital zircon U-Pb geochronology and integrate it with previously established geologic and sedimentologic relationships to document how Late Cretaceous through Cenozoic trends in sandstone composition varied through time in response to changing tectonic environments and paleogeography. Petrographic composition and detrital zircon age distributions of Great Valley forearc stratigraphy demonstrate a transition from axial drainage of the Klamath Mountains to a dominantly transverse Sierra Nevada plutonic source throughout Late Cretaceous–early Paleogene time. The abrupt presence of significant pre-Permian and Late Cretaceous–early Paleogene zircon age components suggests an addition of extraregional sediment derived from the Idaho batholith region and Challis volcanic field into the northern forearc basin by early–middle Eocene time as a result of continental extension and unroofing. New data from the Upper Cenozoic strata in the East Bay region show a punctuated voluminous influx (>30%) of middle Eocene–Miocene detrital zircon age populations that corresponds with westward migration and cessation of silicic ignimbrite eruptions in the Nevada caldera belt (ca. 43–40, 26–23 Ma). Delivery of extraregional sediment to central California diminished by early Miocene time as renewed erosion of the Sierra Nevada batholith and recycling of forearc strata were increasingly replaced by middle–late Miocene andesitic arc–derived sediment that was sourced from Ancestral Cascade volcanism (ca. 15–10 Ma) in the northern Sierra Nevada. Conversely, Cenozoic detrital zircon age distributions representative of the Mesozoic Sierra Nevada batholith and radiolarian chert and blueschist-facies lithics reflect sediment eroded from locally exhumed Mesozoic subduction complex and forearc basin strata. Intermingling of eastern- and western-derived provenance sources is consistent with uplift of the Coast Ranges and reversal of sediment transport associated with the late Miocene transpressive deformation along the Hayward and Calaveras faults. These provenance trends demonstrate a reorganization and expansion of the western continental drainage catchment in the California forearc during the late transition to flat-slab subduction of the Farallon plate, subsequent volcanism, and southwestward migration of the paleodrainage divide during slab rollback, and ultimately the cessation of convergent margin tectonics and initiation of the continental transform margin in north-central California.


2016 ◽  
Vol 53 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Xiao Ma ◽  
Kunguang Yang ◽  
Xuegang Li ◽  
Chuangu Dai ◽  
Hui Zhang ◽  
...  

The Jiangnan Orogeny generated regional angular unconformities between the Xiajiang Group and the underlying Sibao Group in the western Jiangnan Orogen along the southeastern margin of the Yangtze Block in southeast Guizhou, South China. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon dating of two samples of the Motianling granitic pluton yielded U–Pb zircon ages of 826.2 ± 3.4 and 825.5 ± 6.1 Ma, with an average age of 825.6 ± 3.0 Ma, which is considered the minimum depositional age of the Sibao Group. The U–Pb ages of the youngest detrital zircon grains from the Sibao Group and the Xiajiang Group yielded average ages of 834.9 ± 3.8 and 794.6 ± 4.2 Ma, respectively. The depositional age of the Sibao Group can be constrained at 825–835 Ma, and deposition of the Xiajiang Group did not begin before ca. 800 Ma. These results suggest that the Jiangnan Orogeny, which led to the assembly of the Yangtze and Cathaysia blocks, ended at 795–835 Ma on the western segment of the Jiangnan Orogen. The detrital zircon distribution spectrums of the Sibao and Xiajiang groups suggest a provenance from Neoproterozoic basement sedimentary sequences along with a mixture of local Neoproterozoic subduction-related felsic granitoids, distant plutons from the western Yangtze Block and eastern Jiangnan Orogen, and recycled materials from the interior of the Yangtze Block. By comparing the basin evolution histories and magmatic and metamorphic events along the continental margins of the Rodinia supercontinent, it is proposed that the South China Block might have been located at the periphery, adjacent to North India and East Antarctica, rather than in the interior of Rodinia in Neoproterozoic time.


2016 ◽  
Vol 113 (4) ◽  
pp. 919-924 ◽  
Author(s):  
Erik J. Oerter ◽  
Warren D. Sharp ◽  
Jessica L. Oster ◽  
Angela Ebeling ◽  
John W. Valley ◽  
...  

Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000–55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions.


Author(s):  
Julia I. Corradino ◽  
Alex Pullen ◽  
Andrew L. Leier ◽  
David L. Barbeau Jr. ◽  
Howie D. Scher ◽  
...  

The Bell River hypothesis proposes that an ancestral, transcontinental river occupied much of northern North America during the Cenozoic Era, transporting water and sediment from the North American Cordillera to the Saglek Basin on the eastern margin of the Labrador Sea. To explore this hypothesis and reconstruct Cenozoic North American drainage patterns, we analyzed detrital zircon grains from the Oligocene−Miocene Mokami and Saglek formations of the Saglek Basin and Oligocene−Miocene fluvial conglomerates in the Great Plains of western Canada. U-Pb detrital zircon age populations in the Mokami and Saglek formations include clusters at <250 Ma, 950−1250 Ma, 1600−2000 Ma, and 2400−3200 Ma. Detrital zircons with ages of <250 Ma were derived from the North American Cordillera, supporting the transcontinental Bell River hypothesis. Oligocene−Miocene fluvial strata in western Canada contain detrital zircon age populations similar to those in the Saglek Basin and are interpreted to represent the western headwaters of the ancient Bell River drainage. Strontium-isotope ratios of marine shell fragments from the Mokami and Saglek formations yielded ages between 25.63 and 18.08 Ma. The same shells have εNd values of −10.2 to −12.0 (average = −11.2), which are consistent with values of Paleozoic strata in western North America but are more radiogenic than the modern Labrador Current, Labrador Sea Water, and North Atlantic Deep Water values (εNd ∼−12 to −25). As a freshwater source, the existence and termination of the Bell River may have been important for Labrador Sea circulation, stratification, and chemistry.


2011 ◽  
Vol 149 (3) ◽  
pp. 443-458 ◽  
Author(s):  
ELIŠKA ŽÁČKOVÁ ◽  
JIŘÍ KONOPÁSEK ◽  
JAN KOŠLER ◽  
PETR JEŘÁBEK

AbstractAge spectra of detrital zircons from metamorphosed quartzites of the Krkonoše–Jizera Massif in the northeastern part of the Saxothuringian Domain were obtained by U–Pb laser ablation inductively coupled plasma mass spectrometry dating. The zircon ages cluster in the intervals of 450–530 Ma and 550–670 Ma, and show individual data between 1.6 and 3.1 Ga. Zircons in the analysed samples are predominantly of Cambrian–Ordovician and Neoproterozoic age, and the marked peak at c. 525–500 Ma suggests a late Cambrian maximum age for the sedimentary protolith. Detritus of the quartzites probably originated from the erosion of Cambrian–Ordovician granitoids and their Neoproterozoic (meta)sedimentary or magmatic country rocks. The lack of Neoproterozoic (meta)sedimentary rocks in the central and eastern part of the Krkonoše–Jizera Massif suggests that the country rocks to voluminous Cambrian–Ordovician magmatic bodies were largely eroded during the formation of early Palaeozoic rift basins along the southeast passive margin of the Saxothuringian Domain. The detrital zircon age spectra confirm the previous interpretation that the exposed basement, dominated by Neoproterozoic to Cambrian–Ordovician granitoids, was overthrust during Devonian–Carboniferous subduction–collision processes by nappes composed of metamorphosed equivalents of the uppermost Cambrian–Devonian passive margin sedimentary formations. Only a negligible number of Mesoproterozoic ages, typically from the Grenvillian event, supports the interpretation that the Saxothuringian Neoproterozoic basement has an affinity to the West African Craton of the northwestern margin of Gondwana.


Sign in / Sign up

Export Citation Format

Share Document