scholarly journals Ancient Adélie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica

Geology ◽  
2020 ◽  
Author(s):  
Steven D. Emslie

The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ~800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue.

2018 ◽  
Vol 5 (4) ◽  
pp. 172032 ◽  
Author(s):  
Steven D. Emslie ◽  
Ashley McKenzie ◽  
William P. Patterson

We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin ( Pygoscelis adeliae ) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on low-lying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a ‘supercolony’) by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.


Polar Record ◽  
2007 ◽  
Vol 43 (3) ◽  
pp. 225-229 ◽  
Author(s):  
Matthew Low ◽  
Lisa Meyer ◽  
Colin Southwell

ABSTRACTIn November 2005, the first comprehensive survey for Adélie penguin (Pygoscelis adeliae) breeding sites in the Robinson Group of islands, situated 25 to 55 km east of Australia's Mawson station (67.602°S, 62.879°E) was conducted. Breeding Adélie penguins were found on 30 of the 149 islands, with the number of nests on each island ranging from fewer than 10 to several thousand. With the exception of those islands in the southeast, nesting Adélie penguins were found throughout the Robinson Group. In this paper, the spatial coordinates and presence/absence of breeding penguins for all 149 islands are reported so that researchers may interpret the results in relation to possible future survey work. All locations reported in this paper are in decimal degrees.


2021 ◽  
pp. 1-9
Author(s):  
Parker M. Levinson ◽  
Annie E. Schmidt ◽  
Virginia Morandini ◽  
Megan Elrod ◽  
Dennis Jongsomjit ◽  
...  

Abstract Plumage colour variation occurs widely among bird species and is often associated with individual fitness. More specifically, colouration can affect thermoregulatory ability, mate selection and conspicuousness during foraging. Colour aberrations can be caused by genetic mutations, dietary imbalances, environmental conditions or disease and are rare. Plumage variations have previously been noted in Adélie penguins, although without any follow-up to measure implications for behaviour or fitness. To assess how this low-frequency condition affects breeding in Adélie penguins, we monitored the breeding of several colour-aberrant Adélie penguins during the 2019–2020 nesting season at the large Cape Crozier, Ross Island colony (> 300,000 pairs). In total, we found 12 individuals with unusual plumage for a frequency of 1:50,000 breeding penguins. There were seven dark brown Adélie penguins, three progressive greying Adélie penguins, one dilute Adélie penguin and one brown Adélie penguin, of which five were female, three male and four of unknown sex. Six colour aberrants initiated breeding with a normal-coloured mate, and five raised at least one chick to crèche. The likelihood of breeding and breeding success of colour aberrants were similar to those of normal-coloured Adélie penguins, suggesting that colour aberrations do not negatively affect breeding.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2681
Author(s):  
Seo-Yeon Hong ◽  
Jong-Ku Gal ◽  
Bo-Yeon Lee ◽  
Wu-Ju Son ◽  
Jin-Woo Jung ◽  
...  

To identify the dietary composition and characteristics of both Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) penguins at four breeding sites, we performed stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of down samples taken from penguin chicks. Adélie Penguin chicks at Cape Hallett mostly fed on Antarctic krill (Euphausia superba; 65.5 ± 3.5%), a reflection of the prevalence of that species near Cape Hallett, and no significant differences were noted between 2017 and 2018. However, Adélie Penguin chicks at Inexpressible Island, located near Terra Nova Bay, fed on both Antarctic silverfish (Pleuragramma antarctica; 42.5%) and ice krill (Euphausia crystallorophias; 47%), reflecting the high biomass observed in Terra Nova Bay. Meanwhile, no significant difference was noted between the two breeding sites of the Emperor Penguin. Emperor Penguin chicks predominantly fed on Antarctic silverfish (74.5 ± 2.1%) at both breeding sites (Cape Washington and Coulman Island), suggesting that diet preference represents the main factor influencing Emperor Penguin foraging. In contrast, the diet of the Adélie Penguin reflects presumed regional differences in prey prevalence, as inferred from available survey data.


1998 ◽  
Vol 10 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Eric J. Woehler ◽  
Martin J. Riddle

The relationship between colony area and population density of Adélie penguins Pygoscelis adeliae was examined to determine whether colony area, measured from aerial or satellite imagery, could be used to estimate population density, and hence detect changes in populations over time. Using maps drawn from vertical aerial photographs of Adélie penguin colonies in the Mawson region, pair density ranged between 0.1 and 3.1 pairs m−2, with a mean of 0.63 ± 0.3 pairs m−2. Colony area explained 96.4% of the variance in colony populations (range 90.4–99.6%) for 979 colonies at Mawson. Mean densities were not significantly different among the 19 islands in the region, but significant differences in mean pair density were observed among colonies in Mawson, Whitney Point (Casey, East Antarctica) and Cape Crozier (Ross Sea) populations. The relationship between colony area and population may be locality-and/or species-specific, and a robust data set is required to validate the relationship.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 858 ◽  
Author(s):  
Hila Levy ◽  
Steven R. Fiddaman ◽  
Anni Djurhuus ◽  
Caitlin E. Black ◽  
Simona Kraberger ◽  
...  

Circoviruses infect a variety of animal species and have small (~1.8–2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015−2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.


Polar Biology ◽  
2020 ◽  
Vol 43 (11) ◽  
pp. 1769-1781
Author(s):  
Xintong Chen ◽  
Xiao Cheng ◽  
Baogang Zhang ◽  
Hao Meng ◽  
Di Wu ◽  
...  

Polar Biology ◽  
2021 ◽  
Author(s):  
Vahideh Jafari ◽  
Deborah Maccapan ◽  
Giulio Careddu ◽  
Simona Sporta Caputi ◽  
Edoardo Calizza ◽  
...  

AbstractThe Ross Sea, Antarctica, supports large populations of Emperor Penguin (Aptenodytes forsteri) and Adélie Penguin (Pygoscelis adeliae), two key meso-predators that occupy high trophic levels. Despite these species are largely studied, little is known about their diet outside the breeding period. In the present study, we investigated the intra-annual diet of Adélie and Emperor Penguins belonging to five colonies in the Ross Sea through the stable isotope analysis of different tissues (feathers and shell membranes), synthetized in different seasons, and guano that indicates recent diet. Penguin samples and prey (krill and fish) were collected during the Antarctic spring–summer. δ13C and δ15N of tissues and guano indicate spatio-temporal variation in the penguin diet. The krill consumption by Adélie Penguins was lowest in winter except in the northernmost colony, where it was always very high. It peaked in spring and remained prevalent in summer. The greatest krill contribution to Emperor Penguin’s diet occurred in summer. The relative krill and fish consumption by both species changed in relation to the prey availability, which is influenced by seasonal sea ice dynamics, and according to the penguin life cycle phases. The results highlight a strong trophic plasticity in the Adélie Penguin, whose dietary variability has been already recognized, and in the Emperor Penguin, which had not previously reported. Our findings can help understand how these species might react to resource variation due to climate change or anthropogenic overexploitation. Furthermore, data provides useful basis for future comparisons in the Ross Sea MPA and for planning conservation actions.


The Holocene ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Sandra Lorenzini ◽  
Ilaria Baneschi ◽  
Anthony E. Fallick ◽  
Maria Cristina Salvatore ◽  
Giovanni Zanchetta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document