scholarly journals Prior oil and gas production can limit the occurrence of injection-induced seismicity: A case study in the Delaware Basin of western Texas and southeastern New Mexico, USA

Geology ◽  
2021 ◽  
Author(s):  
Noam Z. Dvory ◽  
Mark D. Zoback

We demonstrate that pore pressure and stress changes resulting from several decades of oil and gas production significantly affect the likelihood of injection-related induced seismicity. We illustrate this process in the Delaware Basin (western Texas and southeastern New Mexico, USA), in which hydraulic fracturing and waste-water injection have been inducing numerous earthquakes in the southernmost part of the basin where there has been no prior oil and gas production from the formations in which the earthquakes are now occurring. In the seismically quiescent part of the basin, we show that pore-pressure and poroelastic-stress changes associated with prior oil and gas production make induced seismicity less likely. The findings of this study have important implications for the feasibility of large-scale carbon storage in depleted oil and gas reservoirs.

Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


2012 ◽  
Author(s):  
Amer Badr Merdhah ◽  
Abu Azam Mohd Yassin

Kerak pemendapan merupakan satu daripada masalah paling penting dan serius dalam sistem suntikan air. Kerak kadangkala mengehadkan atau menghalang penghasilan gas dan minyak melalui penyumbatan matrik atau perpecahan pembentukan minyak dan jeda yang berlubang. Makalah ini mengetengahkan kesimpulan pengukuran makmal bagi kerak terbentuk di dalam keterlarutan medan minyak biasa dalam sintetik air masin (pembentukan air dan air laut) bagi pembentukan air yang mengandungi barium dan kandungan garam yang tinggi pada suhu 40 hingga 90°C pada tekanan atmosfera. Keputusan uji kaji mengesahkan pola kebergantungan keterlarutan bagi kerak medan minyak biasa pada keadaan ini. Pada suhu yang lebih tinggi, kerak bagi CaCO3, CaSO4, dan SrSO4 meningkat manakala kerak BaSO4 menurun disebabkan oleh keterlarutan CaCO3, CaSO4, dan SrSO4 menurun dan keterlarutan BaSO4 meningkat dengan kenaikan suhu. Kata kunci: Masalah pengskalaan; skala keterlarutan; paras kandungan garam tinggi; logam barium tinggi Scale deposition is one of the most important and serious problems which water injection systems are generally engaged in. Scale sometimes limits or blocks oil and gas production by plugging the oil–producing formation matrix or fractures and the perforated intervals. This paper presents a summary of the laboratory measurements of the solubility of common oil field scales in synthetic brines (formation water and sea water) of high–barium and high–salinity formation waters at 40 to 90°C and atmospheric pressure. The experimental results confirm the general trend in solubility dependencies for common oil field scales at these conditions. At higher temperatures the deposition of CaCO3, CaSO4 and SrSO4 scale increases and the deposition of BaSO4 scale decreases since the solubilities of CaCO3, CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. Key words: Scaling problems; solubility of scale; high salinity; high barium


Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 8-16
Author(s):  
Danis K. Nurgaliev ◽  
Svetlana Yu. Selivanovskaya ◽  
Maria V. Kozhevnikova ◽  
Polina Yu. Galitskaya

This article discusses a possible scenario of energy transition in Russia, taking into account the economic structure, presence of huge oil and gas infrastructure and unique natural resources. All this allows to consider global trends of energy and economic decarbonization not only as a challenge, but also as a new opportunity for the country. Considering developed oil and gas production, transportation, refining and petrochemical infrastructure, as well as the vast territory, forest, water and soil resources, our country has unique opportunities for carbon sequestration using both biological systems and the existing oil and gas infrastructure. It is proposed to use the existing oil and gas production facilities for hydrogen generation in the processes of hydrocarbon catalytic transformation inside the reservoir. It is suggested to create and use large-scale technologies for CO2 sequestration using existing oil and gas production infrastructure. Considering high potential of the Russian Federation for carbon sequestration by biological systems, a network of Russian carbon testing areas is being developed, including one at Kazan Federal University (KFU), – the “Carbon-Povolzhye” testing area. The creation of carbon farms based on the applications at such testing areas could become a high-demand high-tech business. A detailed description of the KFU carbon testing area and its planned objectives are given.


Author(s):  
A.V. Babkin ◽  
N.V. Gerasimov ◽  
S.V. Ladov

The problem of certification of shaped-charge perforators appear to be very important in oil and gas production. The paper considers five aspects of the problem. First, it is a physical aspect, which means the problem is viewed from the point of view of the physics of a cumulative explosion; the second aspect is a methodological one, which implies the most desirable, permissible, unacceptable methods of certification and qualification; the next aspect is economic, it focuses on the economy on a large scale, allowing a possible loss in a small one. Perhaps, there are things that are currently more important than the most correct physical considerations and the most perfect methods, so technical and political aspects arise. The final aspect is an organizational one which implies a rational division of powers of government departments. The most important and science-intensive aspect is the physical one, as it is associated with the design, construction, and operation of shaped charges of perforators, and this is the main focus of the paper. The paper carefully analyzes the formation, movement in free space, and action on the combined obstacle: steel — concrete — rock of monolithic and powder cumulative jets from metal and composite materials. Moreover, the study comparatively assesses the penetrating action of shaped charges of perforators according to various methods, both domestic and foreign, and assesses economic, technical, political, and organizational factors in the development of the shaped charges certification procedure. Finally, the study gives recommendations for carrying out certification and qualification tests of shaped charges of perforators in Russia.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Liu Jian-jun ◽  
Yu Xian-bin ◽  
Zhao Jin-zhou

Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore pressure and stress changes with time under different injection-production ratio, which disclosed the dynamic change regulation of pore pressure and stress of surrounding rock nearby the injection and production wells. These results may have implications in the treatment of wellbore stability and optimizing the injection and production processes during oil and gas production.


2011 ◽  
Vol 44 (1) ◽  
pp. 10857-10862 ◽  
Author(s):  
Jorn F.M. Van Doren ◽  
Paul M.J. Van den Hof ◽  
Jan Dirk Jansen ◽  
Okko H. Bosgra

2021 ◽  
Author(s):  
Marcello Augustus Ramos Roberto ◽  
Herbert Prince Koelln ◽  
Rodrigo Iunes De Rezende

Abstract Over the last 20 years Brazil has been the stage where subsea processing and boosting (P&B) technology has supported and pushed the offshore oil and gas production to overcome its challenges and maximize field production and recovery factor. Subsea Oil-Water and Gas-Liquid Separation Systems, Multiphase Pumps, Electrical Submersible Pumps, Raw Water Injection Systems, and other innovative, enabler, optimizer or even disruptive technologies have been developing and applying in Brazil's fields to increase the NPV of projects and make feasible long tiebacks scenarios. This paper will present a retrospective of the most significant P&B systems developed and deployed in Brazil's fields, their operational experience, lessons learned, the next generation under development to surpass Pre-Salt and brown fields challenges and some initiatives to maximize these technologies applications.


1994 ◽  
Author(s):  
Richard F. Mast ◽  
D.H. Root ◽  
L.P. Williams ◽  
W.R. Beeman

Sign in / Sign up

Export Citation Format

Share Document