scholarly journals Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)

Geosphere ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. 937-941 ◽  
Author(s):  
Dewen Zheng ◽  
Marin K. Clark ◽  
Peizhen Zhang ◽  
Wenjun Zheng ◽  
Kenneth A. Farley
2007 ◽  
Vol 44 (7) ◽  
pp. 961-986 ◽  
Author(s):  
Zhen Yan ◽  
Wenjiao Xiao ◽  
Zongqi Wang ◽  
Jilian Li

The Qilian orogenic belt in the northern Tibetan plateau connects the Altaids to the north with the Tethyan orogenic system to the south and occupies a key tectonic position in the evolution and assembly of Asia. The belt contains a wide range of subduction–accretion-related petrotectonic units. The Early–Middle Devonian Laojunshan conglomerate, deposited unconformably upon Cambrian–Silurian strata along the northern margin of the North Qilian terrane, contains a record of the late Paleozoic tectonism of the Qilian orogen. Its provenance and tectonic setting are critical in understanding not only the tectonic evolution of Tibetan plateau, but Paleozoic global reconstructions as well. The composition of clastic conglomerates and heavy mineral assemblages of sandstones suggests that coeval mafic, felsic, metamorphic, and sedimentary rocks were the main sources. The geochemistry of volcanic clasts and paleocurrent and paleogeographic data suggest derivation from subduction–accretion complexes in the North Qilian terrane. The geochemistry of siltstones and mudstones indicates that the Laojunshan conglomerate was derived from an arc and accumulated in an active continental margin. Geochemical data of granitoid clasts suggest that they were derived from Ordovician–Silurian subduction-related magmatic rocks. Mafic and ultramafic clasts, chromite, and magnetite decrease upwards in the stratigraphy whereas metamorphic, sedimentary and granitoid clasts, and garnet increase. These data imply that mafic rocks were the predominant source during initial deposition. Regional studies suggest that the North China plate subducted southwards and produced subduction-related arc magmatism along the southern margin of the North Qilian terrane during the Early–Middle Devonian. Therefore, we interpret the Laojunshan conglomerate as a fore-arc basin fill.


2008 ◽  
Vol 4 (3) ◽  
pp. 175-180 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from the northern Tibetan Plateau has constrained our understanding of precipitation variations in this region. We drilled an ice core on the Puruogangri Ice Field in the central Tibetan Plateau in 2000 to reveal the precipitation variations. The well dated part of the core extends back to AD 1600, allowing us to construct a 400-year annual accumulation record. This record shows that the central Tibetan plateau experienced a drier period with an average annual precipitation of ~300 mm in the 19th century, compared to ~450 mm in the wetter periods during 1700–1780 and the 20th century. This pattern agrees with precipitation reconstructions from the Dunde and Guliya ice cores on the northern Plateau but differs from that found in the Dasuopu ice cores from the southern Plateau The north-south contrasts in precipitation reconstruction reveals difference in moisture origin between the south Tibetan Plateau dominated by the Asian monsoon and the north Tibetan Plateau dominated by the continental recycling and the westerlies.


2019 ◽  
Vol 65 (252) ◽  
pp. 633-644 ◽  
Author(s):  
YANG LI ◽  
SHICHANG KANG ◽  
FANGPING YAN ◽  
JIZU CHEN ◽  
KUN WANG ◽  
...  

ABSTRACTCryoconite is a dark-coloured granular sediment that contains biological and mineralogical components, and it plays a pivotal role in geochemistry, carbon cycling and glacier mass balance. In this work, we collected cryoconite samples from Laohugou Glacier No. 12 (LHG) on the north-eastern Tibetan Plateau during the summer of 2015 and measured the spectral albedo. To explore the impacts of this sediment on surface ablation, the ice melting differences between the cryoconite-free (removed) ice and the intact layers were compared. The results showed that the mean concentrations of black carbon (BC), organic carbon (OC) and total iron (Fe) in the LHG cryoconite were 1.28, 11.18 and 39.94 mg g−1, respectively. BC was found to play a stronger role in solar light adsorption than OC and free Fe. In addition, ice covered by cryoconite exhibited the lowest mean reflectance (i.e., <0.1). Compared with the cryoconite-free ice surface, cryoconite effectively absorbed solar energy and enhanced glacial melting at a rate of 2.27–3.28 cm d−1, and free Fe, BC and OC were estimated to contribute 1.01, 0.99 and 0.76 cm d−1, respectively. This study provides important insights for understanding the role of cryoconite in the glacier mass balance of the northern Tibetan Plateau.


Author(s):  
Ye Wang ◽  
Xuanhua Chen ◽  
Yaoyao Zhang ◽  
Zheng Yin ◽  
Andrew V. Zuza ◽  
...  

Although the Cenozoic Indo-Asian collision is largely responsible for the formation of the Tibetan plateau, the role of pre-Cenozoic structures in controlling the timing and development of Cenozoic deformation remains poorly understood. In this study we address this problem by conducting an integrated investigation in the northern foreland of the Tibetan plateau, north of the Qilian Shan-Nan Shan thrust belt, NW China. The work involves field mapping, U-Pb detrital-zircon dating of Cretaceous strata in the northern foreland of the Tibetan plateau, examination of growth-strata relationships, and construction and restoration of balanced cross sections. Our field mapping reveals multiple phases of deformation in the area since the Early Cretaceous, which was expressed by northwest-trending folding and northwest-striking thrusting that occurred in the early stages of the Early Cretaceous. The compressional event was followed immediately by extension and kinematically linked right-slip faulting in the later stage of the Early Cretaceous. The area underwent gentle northwest-trending folding since the late Miocene. We estimate the magnitude of the Early Cretaceous crustal shortening to be ∼35%, which we interpret to have resulted from a far-field response to the collision between the Lhasa and the Qiangtang terranes in the south. We suggest that the subsequent extension in the Early Cretaceous was induced by orogenic collapse. U-Pb dating of detrital zircons, sourced from Lower Cretaceous sedimentary clasts from the north and the south, implies that the current foreland region of the Tibetan plateau was a topographic depression between two highland regions in the Early Cretaceous. Our work also shows that the Miocene strata in the foreland region of the northern Tibetan plateau was dominantly sourced from the north, which implies that the rise of the Qilian Shan did not impact the sediment dispersal in the current foreland region of the Tibetan plateau where this study was conducted.


2006 ◽  
Vol 43 ◽  
pp. 317-322 ◽  
Author(s):  
Meixue Yang ◽  
Tandong Yao ◽  
Xiaohua Gou ◽  
Huijun Wang

AbstractVery heavy snowfall occurred in the Amdo-Nagqu region during winter 1997/98, and enormous numbers of sheep and yaks died due to starvation and low temperatures. Some observation sites of the GEWEX (Global Energy and Water Cycle Experiment) Asian Monsoon Experiment (GAME)-Tibet are located in this area. In this paper, the variation of the ground temperature (GT) on the northern part of the Tibetan Plateau and its relationship with the heavy snow cover is analyzed based on the GAME-Tibet in situ observational data at several sites. The temporal and spatial differences of the variations of the daily maximum, daily minimum and range in GT are significant in 1997/98 in the northern part of the Tibetan Plateau. For example, at site D110, the daily range in GT fluctuated only 0.2˚C from the end of December 1997 to mid-April 1998, but in the north, at site D66, the daily range in GT fluctuated between 5˚C and ∼20˚C at the same depth and during the same period. At the southernmost site, MS3637, the daily range in GT fluctuated within 1.0˚C from mid-November to early February. From mid-February to mid-March, the daily range in GT increased and the peak was 8.1 ˚C. The temperature variation was related to the heavy snowfall that occurred on the northern Tibetan Plateau in winter 1997/98. The snow-cover conditions at different sites on the northern Tibetan Plateau were evaluated quantitatively from the variation of the GT at shallow depths.


2008 ◽  
Vol 4 (1) ◽  
pp. 233-248 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from northern Tibetan Plateau has constrained the understanding of precipitation variation in this region. An ice core drilled from the Puruogangri Ice Field on central Tibetan Plateau in the year 2000 helped reveal the precipitation variations since AD 1600. Analysis of the annual accumulation data presented precipitation changes from AD 1600, indicative of wet and dry periods in the past 400 year in the central Tibetan Plateau. Accordingly, the 18th and 20th centuries experienced high precipitation period, whilst the 19th century experienced low precipitation period. Such a feature was consistent with precipitation recorded in ice cores from Dunde and Guliya Glaciers, northern Tibetan Plateau. Besides, the results also pointed to consistency in precipitation-temperature correlation on the northern Tibetan Plateau, in a way that temperature and precipitation were positively correlated. But this feature was contrary to the relationship revealed from Dasuopu ice cores, southern Tibetan Plateau, where temperature and precipitation were negatively correlated. The north-south contrast in precipitation amount and its relationship with temperature may shed light on the reconstruction of Asian monsoon since AD 1600.


Sign in / Sign up

Export Citation Format

Share Document