scholarly journals Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from Global Navigation Satellite System and Global Positioning System-Acoustic data

Geosphere ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 535-551 ◽  
Author(s):  
Takuya Nishimura ◽  
Yusuke Yokota ◽  
Keiichi Tadokoro ◽  
Tadafumi Ochi
2021 ◽  
Vol 73 (2) ◽  
pp. 646-665
Author(s):  
Isabel Cristina Moraes ◽  
Shanti Nitya Marengo ◽  
Gustavo Luís Schacht ◽  
Débora Santos Passos

O acesso a geolocalização em smartphones e tablets tem apontado seu uso potencial no levantamento de dados georreferenciados e como ferramenta de mapeamento replicável por usuários não-especialistas. O objetivo deste artigo é apresentar a experiência do mapeamento participativo dos territórios de ação das equipes de Estratégia de Saúde da Família (ESF) do município de Santo Amaro (BA) com recursos de GPS/GNSS (Global Positioning System/Global Navigation Satellite System) e imagem de satélite do Google Earth, no aplicativo Map Marker. Neste trabalho, são apresentados os aspectos da percepção e transcrição dos elementos espaciais no processo de digitalização e atualização cartográfica destes territórios.  Foram realizadas oficinas nas 17 unidades básicas de saúde (UBS) a fim de cartografar os territórios de atuação – microáreas - dos 104 Agentes Comunitários de Saúde (ACS). Das 17 UBS, 10 apresentavam algum produto cartográfico. Esses produtos pré-existentes contribuíram para a correspondência espacial entre o território e as imagens de satélite. A identificação das microáreas foi satisfatória, porém, o maior desafio foi a vetorização das poligonais. Apesar disso, em cada equipe houve ao menos um profissional que se destacou e foi capaz de reproduzir a metodologia sem um mediador. O uso das tecnologias geoespaciais aplicadas ao mapeamento em saúde mostrou-se viável para a área de estudo, e reforça a importância do treinamento para a autonomia dos atores sociais e a democratização desses recursos nas estratégias em saúde pública. A obtenção destas bases cartográficas deve subsidiar à espacialização de doenças registradas na atenção básica bem como à gestão de saúde do município.


1994 ◽  
Vol 47 (2) ◽  
pp. 181-190
Author(s):  
N. Ward

The purpose of the study on which this paper is based was to establish whether there was a maritime requirement for a Global Navigation Satellite System (GNSS) integrity monitoring and warning service in UK and Irish waters, and, if so, how best it could be established and operated.The scope of the study extended to all maritime users: merchant ships; fishing vessels; pleasure craft; and all aspects of the voyage: harbour/harbour approach; coastal and ocean passage.It has been assumed that the United States Global Positioning System (GPS) would be the system adopted, since it is the closest to an operational state. However, most of the technical considerations would apply equally to the Russian GLONASS or any future replacement system under international control.The views expressed are those of the author, and should not be taken to represent the policies of the Department of Transport or any of the other bodies mentioned.


2018 ◽  
Vol 6 (2) ◽  
pp. 155
Author(s):  
Gabriel Oliveira Jerez ◽  
Daniele Barroca Marra Alves

O GPS (Global Positioning System) e o GLONASS (GLObal NAvigation Satellite System) começaram a ser desenvolvidos ainda no início da década de setenta e são, atualmente, os principais sistemas GNSS (Global Navigation Satellite System) com constelação completa disponível. Apesar de os dois sistemas terem obtido constelações completas em períodos próximos, o GLONASS passou por um longo período de degradação, causada principalmente pela falta de investimentos e lançamentos para substituição de satélites mais antigos. Com isso o uso de dados combinados GPS/GLONASS acabou se tornando inviável já no final da década de noventa, devido à instabilidade do GLONASS. Porém, o sistema passou por um processo de modernização e restabelecimento a partir de 2001, obtendo novamente constelação completa de 24 satélites e cobertura global em 2011. A partir dessa nova realidade, novos estudos se fizeram necessário. Nesse sentido o presente trabalho buscou fazer uma revisão dos principais conceitos relacionados ao sistema, bem como do seu histórico, estrutura, além do seu processo de modernização e algumas perspectivas futuras.


2019 ◽  
Vol 94 ◽  
pp. 01019
Author(s):  
Khomsin ◽  
Ira Mutiara Anjasmara ◽  
Danar Guruh Pratomo ◽  
Wahyu Ristanto

Global Navigation Satellite System called GNSS is a term used for the entire global navigation that already operate or are in the planning for the future. Some of the satellite that can be used are GPS (Global Positioning System) operated by USA, GLONASS (Global Navigation Satellite System) operated by Rusia and BeiDou/Compass operated by China. Many errors and biases that occur when measuring with GNSS in the field. Theoritically, there are some errors and biases that can be eliminated or subtracted by strength of satellite geometric. One factor to get a good satellite geometric is to increase the number of satellites received by receiver. In general, the more number of satellites received, the better the geometric satellites received by receivers. The development of receiver technology is currently able to capture GPS, GLONASS and BeiDou signals at one time. Thus the receiver can receive many satellites and finally the shape of geometric satellite becomes better. HiTarget V30 is one of the latest GNSS technology on the market today. This receiver is capable of receiving GPS signals, GLONASS and BeiDou at one time of observation. This research will compare the accuracy of positioning using GPS, GLONASS and BeiDou satellite.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3860 ◽  
Author(s):  
Specht

According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders—special, 1a, 1b, and 2—for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 m, 5 m, 5 m, and 20 m at a confidence level of 0.95. It is widely assumed that GNSS (Global Navigation Satellite System) network solutions with an accuracy of 2–5 cm (p = 0.95) and maritime DGPS (Differential Global Positioning System) systems with an error of 1–2 m (p = 0.95) are currently the two main positioning methods in hydrography. Other positioning systems whose positioning accuracy increases from year to year (and which may serve as alternative solutions) have been omitted. The article proposes a method that enables an assessment of any given navigation positioning system in terms of its compliance (or non-compliance) with the minimum accuracy requirements specified for hydrographic surveys. The method concerned clearly assesses whether a particular positioning system meets the accuracy requirements set out for a particular IHO order. The model was verified, taking into account both past and present research results (stationary and dynamic) derived from tests on the following systems: DGPS, EGNOS (European Geostationary Navigation Overlay Service), and multi-GNSS receivers (GPS/GLONASS/BDS/Galileo). The study confirmed that the DGPS system meets the requirements for all IHO orders and proved that the EGNOS system can currently be applied in measurements in the orders 1a, 1b, and 2. On the other hand, multi-GNSS receivers meet the requirements for order 2, while some of them meet the requirements for orders 1a and 1b as well.


2019 ◽  
Vol 11 (13) ◽  
pp. 1545
Author(s):  
Liu ◽  
Lou ◽  
Zhang ◽  
Huang ◽  
Zhou ◽  
...  

A rapid tropospheric tomography system was developed by using algebraicreconstruction technique. Influences of different factors on the tomographic results, including theground meteorological data, the multi-Global Navigation Satellite System (GNSS) observations, theground station distribution and the tomographic horizontal resolution, were systematicallyinvestigated. In order to exclude the impacts from discrepancies of water vapor informationbetween input observations and references on the tomographic results, the latest reanalysisproducts, ERA5, which were taken as references for result evaluations, were used to simulate slantwet delay (SWD) observations at GNSS stations. Besides, the slant delays derived from GNSSprocessing were also used to evaluate the reliability of simulated observations. Tomography resultsshow that the input both SWD and ground meteorological data could improve the tomographicresults where SWD mainly improve the results at middle layers (500 to 5000m, namely 2 to 16 layer)and ground meteorological data could improve the humidity fields at bottom layers further (0 to500m, namely 0 to 2 layer). Compared to the usage of Global Positioning System (GPS) only SWD,the inclusion of multi-GNSS SWD does not significantly improve the tomographic results at alllayers due to the almost unchanged dispersion of puncture points of GNSS signals. However,increases in the ground GNSS stations can benefit the tomography, with improvements of morethan 10% at bottom and middle layers. Higher tomographic horizontal resolution can furtherslightly improve the tomographic results (about 3-6% from 0.5 to 0.25 degrees), which, however,will also increase the computational burden at the same time.


Oseanika ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Muhamad Irfan ◽  
Dwi Haryanto

Sistem navigasi merupakan sistem yang memandu wahana gerak dari satu tempat ke tempat lainnya. Ada banyak sistem navigasi yang digunakan baik untuk kepentingan survei maupun untuk kepentingan umum. Sistem navigasi yang sudah dikenal luas adalah sistem navigasi berbasis satelit menggunakan global navigation satellite system (GNSS) atau global positioning system (GPS). GPS mempunyai kelemahan akibat faktor eksternal yakni sangat tergantung pada perambatan sinyal gelombang elektromagnetik dari satelit GPS ke receiver GPS. Sistem navigasi yang lainnya dan belum banyak dikenal namun sudah banyak digunakan adalah sistem navigasi inersial atau INS (inertial navigation system). INS ini merupakan sistem navigasi yang tidak terpengaruh oleh faktor eksternal, karena dibuat dengan mengikuti hukum gerak Newton, dan terdiri dari sensor accelerometer dan gyroscope. Biasanya INS ini dikombinasikan dengan sistem navigasi GPS untuk mendapatkan informasi navigasi yang lengkap dan akurat, yaitu posisi absolut, percepatan, kecepatan, arah, dan kelabilan (attitude) dengan frekuensi pengambilan data yang tinggi. Tulisan ini membahas tentang model dasar INS dari buku “Inertial Navigation Systems with Geodetic Applications” [Jekeli].Kata kunci:navigasi, accelerometer, gyroscope, inersial, GPS, Kalman filter


2013 ◽  
Vol 19 (3) ◽  
pp. 374-390 ◽  
Author(s):  
Vinícius Amadeu Stuani Pereira ◽  
Paulo de Oliveira Camargo

As observáveis GNSS (Global Navigation Satellite System) são afetadas por erros sistemáticos devido aos elétrons livres presentes na ionosfera. O erro associado à ionosfera depende do Conteúdo Total de Elétrons (TEC - Total Electron Content), que é influenciado por diversas variáveis: ciclo solar, época do ano, hora local, localização geográfica e atividade geomagnética. Os receptores GPS (Global Positioning System), GLONASS (Global Orbiting Navigation Satellite System) e Galileo de dupla frequência permitem calcular o erro que afeta as observáveis GNSS e o TEC. Com a taxa de variação do TEC (ROT - Rate of TEC) pode-se determinar índices que indicam irregularidades da ionosfera, permitindo assim fazer inferências sobre o comportamento da mesma. Atualmente é possível realizar estudos dessa natureza no Brasil, devido às diversas Redes Ativas disponíveis, tais como a RBMC/RIBaC (Rede Brasileira de Monitoramento Contínuo/Rede INCRA de Bases Comunitárias) e a Rede GNSS Ativa do Estado de São Paulo. A pesquisa proposta visou à estimativa e análise de índices de irregularidades da ionosfera, além de suprir as geociências de informações sobre o comportamento da ionosfera.


Sign in / Sign up

Export Citation Format

Share Document