scholarly journals Testing local and extraregional sediment sources for the Late Cretaceous northern Nanaimo basin, British Columbia, using 40Ar/39Ar detrital K-feldspar thermochronology

Geosphere ◽  
2021 ◽  
Author(s):  
V. Isava ◽  
M. Grove ◽  
J.B. Mahoney ◽  
J.W. Haggart

Detrital K-feldspar 40Ar/39Ar thermochronology was conducted on clastic sedimentary rock samples collected from northern exposures of the Upper Cretaceous Nanaimo Group on Vancouver Island and adjacent Gulf Islands of British Columbia to constrain the denudation history of the local Coast Mountains batholith source region and determine the origin of extraregional sediment supplied to the basin. Strata of the northern Nanaimo Group deposited between 86 and 83 Ma (Comox and Extension formations) exhibit a 130–85 Ma age distribution of detrital K-feldspar 40Ar/39Ar ages that lack age maxima. These are interpreted to have been sourced from the southwestern Coast Mountains batholith. Younger strata deposited between 83 and 72 Ma (Cedar District and De Courcy formations) yield a broader age range (150–85 Ma) with an age maximum near the depositional age. These results indicate focused denudation of deeper-seated rocks east of the Harrison Lake fault. The youngest units deposited after 72 Ma (Geoffrey, Spray, and Gabriola formations) primarily yield younger than 75 Ma detrital K-feldspar ages with pronounced age maxima near the depositional age. This sediment was sourced extraregionally relative to the Coast Mountains batholith. We sought to constrain the origin of the extra-regional sediment by measuring the thermal histories of 74 samples of basement rocks from throughout the Pacific Northwest, and by compiling a database of over 2400 biotite 40Ar/39Ar and K/Ar cooling ages from predominantly Cretaceous batholiths along the western North American margin. This analysis focused upon two previously proposed source regions: the Idaho batholith and the Mojave-Salina margin of southern California. The Nanaimo detrital K-feldspar 40Ar/39Ar age distributions favor the peraluminous Late Cretaceous Idaho batholith and its Proterozoic Belt-Purcell Supergroup sedimentary wall rock as the more likely source of the extraregional sediment and disfavor the Baja–British Columbia hypothesis for 2000–4000-km-scale translation of rocks along the margin during the Late Cretaceous.

2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lianna Vice ◽  
H. Daniel Gibson ◽  
Steve Israel

Abstract The Intermontane-Insular terrane boundary stretches over 2000 kilometers from British Columbia to Alaska in the western Cordillera. Juxtaposed between these terranes is a series of Jura-Cretaceous basinal and arc assemblages that record a complicated and contested tectonic evolution related to the Mesozoic-Paleocene accretionary history of northwestern North America. In southwest Yukon, west-verging thrust faults facilitated structural stacking of the Yukon-Tanana terrane over these basinal assemblages, including the Early Cretaceous Blanchard River assemblage. These previously undated compressional structures are thought to be related to the final collapse of the Jura-Cretaceous basins and the tectonic burial of the Blanchard River assemblage resulting in amphibolite facies metamorphism. New in situ U-Th-Pb monazite ages record at least three tectonic events: (1) the tectonic burial of the Blanchard River assemblage to amphibolite facies conditions between 83 and 76 Ma; (2) peak burial was followed by regional exhumation at ca. 70-68 Ma; and (3) intense heating and ca. 63-61 Ma low-pressure contact metamorphism attributed to the intrusion of the voluminous Ruby Range suite, which is part of the northern Coast Mountains batholith. The tectonometamorphic evolution recorded in the Blanchard River assemblage can be correlated to tectonism within southwest Yukon and along the length of the Insular-Intermontane boundary from western British Columbia through southwestern Yukon and Alaska. In southwest Yukon, these results suggest an asymmetric final collapse of Jura-Cretaceous basins during the Late Cretaceous, which relates to the terminal accretion of the Insular terranes as they moved northward.


1982 ◽  
Vol 19 (3) ◽  
pp. 524-539 ◽  
Author(s):  
J. J. Clague ◽  
J. G. Souther

A large (ca. 5 × 106 m3) landslide occurred on the west flank of Mount Cayley in the southern Coast Mountains of British Columbia in 1963. Failure commenced when a large block of poorly consolidated tuff breccia and columnar-jointed dacite was detached from the subvolcanic basement and slid into the valley of Dusty Creek, a small tributary of Turbid Creek. As the detached block accelerated, it quickly fragmented into an aggregate consisting of angular clasts up to several metres across, partially supported by a matrix of fine comminuted rock material. The landslide debris moved about 1 km down Dusty Creek as a wedge-shaped mass up to 70 m thick, banking up on turns and attaining a maximum velocity of 15–20 m/s. The debris mass thinned as it spread across the broader, flatter valley of Turbid Creek, and was deposited as an irregular blanket with a maximum thickness of 65 m along a 1 km length of this valley. As a result of the landslide, Turbid and Dusty Creeks were blocked, and lakes formed behind the debris. These debris dams were soon overtopped and rapidly breached, causing floods and probably debris flows to sweep down Turbid Creek valley far beyond the terminus of the landslide.From an analysis of the annual rings of slide-damaged trees, it is concluded that the landslide probably occurred in July 1963. Although the largest earthquake of 1963 and a moderately intense rainstorm also occurred during this month, there were much larger earthquakes and storms in this area on many previous occasions, and these did not cause large slope failures. Thus, it appears that the stability of the slope at the head of Dusty Creek gradually deteriorated over a long period of time until a relatively minor event, such as a small earthquake or storm, triggered the failure.The main contributing factors to this landslide are geologic and include the presence of: (1) hydrothermally altered faults and fractures in poorly lithified pyroclastic rocks and in jointed volcanic flows; (2) an outward-sloping unconformity separating the Quaternary volcanic sequence from older basement rocks; and (3) fractured glassy selvages surrounding small intrusions in the base of the volcanic pile.Deposits of one or more landslides that predate the 1963 event also occur in Turbid Creek valley. These older deposits are present over a much larger area than the 1963 slide deposits and probably were emplaced by highly mobile debris flows with high water content.


Geosphere ◽  
2021 ◽  
Author(s):  
J. Brian Mahoney ◽  
James W. Haggart ◽  
Marty Grove ◽  
David L. Kimbrough ◽  
Virginia Isava ◽  
...  

Accurate reconstruction of the Late Cretaceous paleogeography and tectonic evolution of the west- ern North American Cordilleran margin is required to resolve the long-standing debate over proposed large-scale, orogen-parallel terrane translation. The Nanaimo Basin (British Columbia, Canada) contains a high-fidelity record of orogenic exhumation and basin subsidence in the southwestern Canadian Cordillera that constrains the tectonic evolution of the region. Integration of detrital zircon U-Pb geochronology, conglomerate clast U-Pb geochronology, detrital muscovite 40Ar/39Ar thermochronology, and Lu-Hf isotopic analysis of detrital zircon defines a multidisciplinary provenance signature that provides a definitive linkage with sediment source regions north of the Sierra Nevada arc system (western United States). Analysis of spatial and temporal provenance variations within Nanaimo Group strata documents a bimodal sediment supply with a local source derived from the adjacent magmatic arc in the southern Coast Mountains batholith and an extra-regional source from the Mesoproterozoic Belt Supergroup and the Late Cretaceous Atlanta lobe of the Idaho batholith. Particularly robust linkages include: (1) juvenile (εHf >+10) Late Cretaceous zircon derived from the southern Coast Mountains batholith; (2) a bimodal Proterozoic detrital zircon signature consistent with derivation from Belt Supergroup (1700–1720 Ma) and ca. 1380 Ma plutonic rocks intruding the Lemhi subbasin of central Idaho (northwestern United States); (3) quartzite clasts that are statistical matches for Mesoproterozoic and Cambrian strata in Montana and Idaho (northwestern United States) and southern British Columbia; and (4) syndepositional evolved (εHf >−10) Late Cretaceous zircon and muscovite derived from the Atlanta lobe of the Idaho batholith. These provenance constraints support a tectonic restoration of the Nanaimo Basin, the southern Coast Mountains batholith, and Wrangellia to a position outboard of the Idaho batholith in Late Cretaceous time, consistent with proposed minimal-fault-offset models (<~1000 km).


2016 ◽  
Vol 43 (2) ◽  
pp. 103 ◽  
Author(s):  
Deanne Van Rooyen ◽  
Sharon D. Carr

The Thor-Odin dome is a basement-cored tectonothermal culmination in southern British Columbia containing high-grade metamorphic rocks that were polydeformed in the Late Cretaceous to Eocene. The rocks south of the Thor-Odin dome that extend ca. 20 km to the Pinnacles culmination and Whatshan batholith comprise a heterogeneous tract of polydeformed medium- to high-grade metamorphic rocks and host the South Fosthall pluton near the base of the structural section. They lie in the footwall of the Columbia River fault (CRF) zone, a moderately east-dipping, ductile-brittle, normal fault that was active after ca. 55 Ma and reactivated periodically up to 30 Ma. This tract of rocks has been interpreted as a mid-crustal zone that was exhumed and cooled during Eocene extension or, alternatively, a mid-crustal channel that was bounded at the top by the CRF and was active during the Late Cretaceous to Eocene. However, the timing of metamorphism, deformation, anatexis in basement rocks, and intrusion of leucogranite plutons reveals that there are four tectonothermal domains within the tract that each experienced metamorphism, deformation and cooling at different times. These rocks record Cretaceous metamorphism and cooling in the upper structural levels and three stages of progressive metamorphism and penetrative deformation that migrated into deeper crustal levels in the Paleocene and Eocene producing a complex structural section that was exhumed in part due to motion on the Columbia River fault zone, and in part due to NE-directed transport over a basement ramp.RÉSUMÉLe dôme de Thor-Odin correspond à une culmination tectonothermique d’un noyau de socle dans le sud de la Colombie-Britannique renfermant des roches métamorphiques de haute intensité polydéformées entre le Crétacé supérieur et l’Éocène. Les roches au sud du dôme de Thor-Odin qui s’étendent sur environ 20 km jusqu’à la culmination des Pinnacles et du batholite de Whatshan sont constituées d’une bande hétérogène de roches polydéformées à faciès métamorphique d’intensité moyenne à élevée qui constitue l’encaissant du pluton de South Fosthall près de la base de la colonne structurale. Elles se trouvent dans l'éponte inférieure de la zone de faille de la rivière Columbia (CRF), une faille normale à pendage modéré vers l’est, ductile-fragile, qui a été active après 55 Ma environ et a été réactivée périodiquement jusqu'à 30 Ma. Cette bande de roches a été interprétée comme une zone de mi-croûte qui a été exhumée et a refroidi durant l’extension éocène ou alors comme un canal mi-crustal qui a été limité au sommet par la CRF, et qui a été actif de la fin du Crétacé jusqu’à l’Éocène. Toutefois, la chronologie du métamorphisme, de la déformation, de l’anatexie dans les roches du socle, et de l'intrusion de plutons de leucogranite, montre qu'il existe quatre domaines tectonothermiques pour chaque bande qui ont subit du métamorphisme, de la déformation et du refroidissement à différents moments. Ces roches exhibent un métamorphisme et un refroidissement crétacé dans les niveaux structuraux supérieurs et trois stades de métamorphisme progressif et de déformation pénétrative qui ont migré dans les niveaux crustaux profonds au Paléocène et à l’Eocène constituant ainsi une colonne structurale complexe qui a été exhumée en partie en raison du mouvement de la zone de faille de Columbia River, et en partie en raison du transport vers le N.-E. sur une rampe de socle.


Sign in / Sign up

Export Citation Format

Share Document