Correlation, ages, and uplift rates of Quaternary marine terraces: South-central coastal California

Author(s):  
Kathryn L. Hanson ◽  
John R. Wesling ◽  
William R. Lettis ◽  
Keith I. Kelson ◽  
Lili Mezger
Science ◽  
1988 ◽  
Vol 240 (4853) ◽  
pp. 803-804 ◽  
Author(s):  
C. M. WARD

2021 ◽  
Author(s):  
Luca C Malatesta ◽  
Noah J. Finnegan ◽  
Kimberly Huppert ◽  
Emily Carreño

<p>Marine terraces are a cornerstone for the study of paleo sea level and crustal deformation. Commonly, individual erosive marine terraces are attributed to unique sea level high-stands. This stems from early reasoning that marine platforms could only be significantly widened under moderate rates of sea level rise as at the beginning of an interglacial and preserved onshore by subsequent sea level fall. However, if marine terraces are only created during brief windows at the start of interglacials, this implies that terraces are unchanged over the vast majority of their evolution, despite an often complex submergence history during which waves are constantly acting on the coastline, regardless of the sea level stand.<span> </span></p><p>Here, we question the basic assumption that individual marine terraces are uniquely linked to distinct sea level high stands and highlight how a single marine terrace can be created By reoccupation of the same uplifting platform by successive sea level stands. We then identify the biases that such polygenetic terraces can introduce into relative sea level reconstructions and inferences of rock uplift rates from marine terrace chronostratigraphy.</p><p>Over time, a terrace’s cumulative exposure to wave erosion depends on the local rock uplift rate. Faster rock uplift rates lead to less frequent (fewer reoccupations) or even single episodes of wave erosion of an uplifting terrace and the generation and preservation of numerous terraces. Whereas slower rock uplift rates lead to repeated erosion of a smaller number of polygenetic terraces. The frequency and duration of terrace exposure to wave erosion at sea level depend strongly on rock uplift rate.</p><p>Certain rock uplift rates may therefore promote the generation and preservation of particular terraces (e.g. those eroded during recent interglacials). For example, under a rock uplift rate of ca. 1.2 mm/yr, Marine Isotope Stage (MIS) 5e (ca. 120 ka) would resubmerge a terrace eroded ca. 50 kyr earlier for tens of kyr during MIS 6d–e stages (ca. 190–170 ka) and expose it to further wave erosion at sea level. This reoccupation could accordingly promote the formation of a particularly wide or well planed terrace associated with MIS 5e with a greater chance of being preserved and identified. This effect is potentially illustrated by a global compilation of rock uplift rates derived from MIS 5e terraces. It shows an unusual abundance of marine terraces documenting uplift rates between 0.8 and 1.2 mm/yr, supporting the hypothesis that these uplift rates promote exposure of the same terrace to wave erosion during multiple sea level stands.</p><p>Hence, the elevations and widths of terraces eroded during specific sea level stands vary widely from site-to-site and depend on local rock uplift rate. Terraces do not necessarily correspond to an elevation close to that of the latest sea level high-stand but may reflect the elevation of an older, longer-lived, occupation. This leads to potential misidentification of terraces if each terrace in a sequence is assumed to form uniquely at successive interglacial high stands and to reflect their elevations.</p>


Author(s):  
Daniel L. Morel ◽  
Kristin D. Morell ◽  
Edward A. Keller ◽  
Tammy M. Rittenour

The Transverse Ranges of southern California are a region of active transpression on the western margin of North America that hosts some of the world’s highest uplift rates at the Ventura anticline. Yet, the manner in which rock uplift rates change along strike from Ventura to the westernmost Transverse Ranges and the structures that may be responsible for this uplift remain unclear. Here, we quantified rock uplift rates within the westernmost 60 km of the Transverse Ranges by obtaining new age constraints from raised beach and shoreface deposits from marine terraces along the Gaviota coast. Twelve radiocarbon (seven sites) and eight luminescence (six sites) ages, ranging from ca. 50 to 40 k.y. B.P. and ca. 56 to 43 ka, respectively, consistently suggest that the first emergent terrace dates to marine isotope stage (MIS) 3, rather than MIS 5a as previously reported for the western Gaviota coast. These younger ages yield rock uplift rates between 0.8 ± 0.3 and 1.8 ± 0.4 m/k.y., i.e., over five times higher than previous estimates for this region. The spatial distribution of rock uplift rates and the abrupt along-strike changes in marine terrace elevations favor a regional tectonic model with a step-wise change in rock uplift across the south branch of the Santa Ynez fault. The south branch of the Santa Ynez fault appears to separate two regional tectonic blocks, characterized by rock uplift rates of ∼1.3−1.6 m/k.y. to the east and slightly lower rates to the west (∼0.8−1.4 m/k.y.). Our observations suggest that coastal rock uplift is primarily accommodated by deeply rooted far-field structures such as the offshore Pitas Point−North Channel fault system and the Santa Ynez fault, and that smaller through-going structures impart second-order controls and locally accommodate short-wavelength (<10-km-long strike length) deformation. These results imply that although the rates of rock uplift decline westward along strike, the westernmost portion of the western Transverse Ranges nonetheless accommodates relatively high (>1 m/k.y.) rock uplift rates at a significant distance (>50 km) from the rapidly uplifting (6−7 m/k.y.) Ventura anticline, and >100 km from the prominent restraining bend (“Big Bend”) in the San Andreas fault. The new constraints on the geometry of Quaternary-active structures and regional rates of fault-related deformation have implications for regional earthquake source models and seismic hazard assessment in the highly populated southern California coast region.


2018 ◽  
Vol 90 (2) ◽  
pp. 418-434 ◽  
Author(s):  
Daniel Moraetis ◽  
Frank Mattern ◽  
Andreas Scharf ◽  
Gianluca Frijia ◽  
Timothy M. Kusky ◽  
...  

AbstractThis work explores the uplift history of the best exposed marine terraces in the northeastern Arabian Peninsula (eastern Al Hajar Mountains). A multidisciplinary approach was employed, including a topographic survey, 14C dating, thin section studies, and scanning electron microscopy analyses. Six distinctive marine terraces with widths ranging from tenth of meters to kilometers and elevations from 5 to ~400 m were studied. These terraces record an along-strike heterogeneous uplift history, while they show temporally variable uplift rates ranging between 0.9 to 6.7 mm/yr, which correlates well with other published uplift rates of marine terraces of the eastern Arabian Peninsula. We attribute the variable uplift along strike of the terraces, to a combination of uplift mechanisms: (1) during early to mid-Miocene along deep-rooted reverse faults that bound large crustal-scale blocks, (2) Pliocene or post-Pliocene uplift on the outer wall of the forebulge of the lower Arabian Plate as it bends to enter the Zagros-Makran subduction zone, and (3) a possible slowdown of subduction for the past ~40 ka.


2019 ◽  
Vol 7 (1) ◽  
pp. 321-344 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) is currently experiencing active surface uplift, as attested by the presence of emerged marine terraces along the coast. To better understand the uplift recorded by these terraces, we investigated seven localities along the Iranian Makran and we performed radiocarbon, 230Th∕U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea-level highstands. Our results show east–west variations in surface uplift rates mostly between 0.05 and 1.2 mm yr−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, but we are uncertain how to interpret these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked to the occurrence of large megathrust earthquakes, our results highlight rapid surface uplift for a subduction zone context and heterogeneous accumulation of deformation in the overriding plate.


2018 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) has not experienced a great megathrust earthquake in recent human history, yet, the presence of emerged marine terraces along the coast indicates that the margin has been tectonically active during at least the late Quaternary. To better understand the surface deformation of this region, we mapped the terraces sequences of seven localities along the Iranian Makran. Additionnaly, we performed radiocarbon, 230Th/U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea level highstands. Our results show east-west variations in surface uplift rates mostly between 0.05 and 1.2 mm y−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, yet we are uncertain how to insert these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked with the occurrence of large megathrust earthquakes, our results highlight heterogeneous accumulation of deformation in the overriding plate.


Geology ◽  
2012 ◽  
Vol 40 (11) ◽  
pp. 1019-1022 ◽  
Author(s):  
Erica D. Erlanger ◽  
Darryl E. Granger ◽  
Ryan J. Gibbon

2021 ◽  
Vol 13 (4) ◽  
pp. 1477-1497
Author(s):  
Evan Tam ◽  
Yusuke Yokoyama

Abstract. Sea-level proxies for Marine Isotopic Stage 5e (MIS 5e, ca. 124 ka) are abundant along the Japanese shoreline and have been documented for over at least the past 60 years. The bulk of these sea-level proxies are identified in Japan as marine terraces, often correlated by stratigraphic relationships to identified tephra layers, or other chronologically interpreted strata. Use of stratigraphic correlation in conjunction with other techniques such as paleontological analysis, tectonic uplift rates, tephra (volcanic ash), uranium–thorium (U–Th), and carbon-14 (14C) dating have connected Japan's landforms to global patterns of sea-level change. This paper reviews over 60 years of publications containing sea-level proxies correlated with MIS 5e in Japan. Data collected for this review have been added to the World Atlas of Last Interglacial Shorelines (WALIS), following their standardizations on the elements necessary to analyze paleosea-levels. This paper reviewed over 70 studies, assembling data points for over 300 locations and examining related papers denoting sea-level indicators for MIS 5e. The database compiled for this review (Tam and Yokoyama, 2020) is available at https://doi.org/10.5281/zenodo.4294326. Sea-level proxy studies in Japan rely heavily on chronostratigraphic techniques and are recognized as reliable, though opportunities exist for further constraining through the further use of numerical age dating techniques.


2021 ◽  
Vol 13 (6) ◽  
pp. 2487-2513
Author(s):  
Roland Freisleben ◽  
Julius Jara-Muñoz ◽  
Daniel Melnick ◽  
José Miguel Martínez ◽  
Manfred R. Strecker

Abstract. Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacial-cycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along ∼ 5000 km of the western coast of South America between 1∘ N and 40∘ S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr−1 averaged over the past ∼ 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (∼ 100–200 m) and long-wavelength (∼ 102 km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaíso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document