Low-frequency relativistic electromagnetic solitons in collisionless plasmas

JETP Letters ◽  
1998 ◽  
Vol 68 (1) ◽  
pp. 36-41 ◽  
Author(s):  
T. Zh. Esirkepov ◽  
F. F. Kamenets ◽  
S. V. Bulanov ◽  
N. M. Naumova
2003 ◽  
Vol 21 (4) ◽  
pp. 541-544 ◽  
Author(s):  
M. LONTANO ◽  
M. BORGHESI ◽  
S.V. BULANOV ◽  
T.Z. ESIRKEPOV ◽  
D. FARINA ◽  
...  

Low-frequency, relativistic, subcycle solitary waves are found in two-dimensional and three-dimensional particle-in-cell (PIC) numerical simulations, as a result of the interaction of ultrashort, high-intensity laser pulses with plasmas. Moreover, nondrifting, subcycle relativistic electromagnetic solitons have been obtained as solutions of the hydrodynamic equations for an electron–ion warm plasma, by assuming the quasi-neutrality character of the plasma response. In addition, the formation of long-living macroscopic soliton-like structures has been experimentally observed by means of the proton imaging diagnostics. Several common features result from these investigations, as, for example, the quasi-neutral plasma response to the soliton radiation, in the long-term evolution of the system, which leads to the almost complete expulsion of the plasma from the region where the electromagnetic radiation is concentrated, even at subrelativistic field intensity. The results of the theoretical investigations are reviewed with special attention to these similarities.


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
P. L. Sulem ◽  
T. Passot

With the aim to develop a tool for simulating turbulence in collisionless magnetized plasmas, fluid models retaining low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections are discussed. It turns out that, in the absence of ion-cyclotron resonance, the dispersion and damping of kinetic Alfvén waves at scales as small as a fraction of the ion Larmor radius are accurately reproduced when using fluid estimates of the non-gyrotropic moments, at leading-order within a large-scale asymptotics. Differently, evaluations based on the low-frequency linear kinetic theory are necessary in regimes of large temperature anisotropies, and in particular in the presence of the mirror instability. Combining both descriptions leads to a new Landau fluid model retaining large-scale FLR nonlinearities, while reproducing the linear dynamics of low-frequency modes at the sub-ionic scales.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 731-743 ◽  
Author(s):  
K. M. Ferrière

Abstract. We review the basic approximations underlying magnetohydrodynamic (MHD) theory, with special emphasis on the closure approximations, i.e. the approximations used in any fluid approach to close the hierarchy of moment equations. We then present the main closure models that have been constructed for collisionless plasmas in the large-scale regime, and we describe our own mixed MHD-kinetic model, which is designed to study low-frequency linear waves and instabilities in collisionless plasmas. We write down the full dispersion relation in a new, general form, which gathers all the specific features of our MHD-kinetic model into four polytropic indices, and which can be applied to standard adiabatic MHD and to double-adiabatic MHD through a simple change in the expressions of the polytropic indices. We study the mode solutions and the stability properties of the full dispersion relation in each of these three theories, first in the case of a uniform plasma, and then in the case of a stratified plasma. In both cases, we show how the results are affected by the collisionless nature of the plasma.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Christian L. Vásconez ◽  
D. Perrone ◽  
R. Marino ◽  
D. Laveder ◽  
F. Valentini ◽  
...  

The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov–Maxwell simulations of collisionless plasmas, Hall magnetohydrodynamics and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer. This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in these kinds of plasmas.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document