Role of spring soil moisture in the formation of large-scale droughts in the East European Plain in 2002 and 2010

2015 ◽  
Vol 51 (4) ◽  
pp. 405-411 ◽  
Author(s):  
A. V. Kislov ◽  
M. I. Varentsov ◽  
L. L. Tarasova
2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.


2020 ◽  
Vol 163 ◽  
pp. 02004
Author(s):  
Maxim Kharlamov ◽  
Maria Kireeva

Drought is one of the most dangerous natural hazards that has a huge impact on the economy and population in the world and in Russia as well. A large number of studies speak of an increase in the number of droughts and low flow conditions, including Russia. In this work, an analysis was made of the conditions for droughts in the East European Plain over the past 38 years based on the data from the ERA-5 reanalysis. The atmospheric precipitation, air temperature over the seasons and the Palmer index (as a general indicator) for the study area were analyzed. Much attention was paid to the characteristics of the winter period, since the supposedly mild winters create favorable conditions for the formation of droughts in the summer period. It was found that the main factors affecting the drought formation of 2007-2018 was the lack of summer rainfall, and the remaining factors played a “preparatory” role in the process of the formation of large-scale drought.


2019 ◽  
Vol 70 (3) ◽  
pp. 198-210
Author(s):  
Nikolay Khitrov ◽  
Maria Smirnova ◽  
Nikolai Lozbenev ◽  
Ekaterina Levchenko ◽  
Vasiliy Gribov ◽  
...  

Abstract The soil cover of the forest-steppe and steppe zones of the East European Plain is characterized by diverse soil combinations revealed during large-scale and detailed soil mapping against the background of a traditional zonal sequence of dominant automorphic soils alternating from the north to the south and clearly displayed on small-scale soil maps. The composition, configuration and functioning of particular soil cover patterns are determined by the soil forming factors acting within a given area. The elementary soil areas (detailed scale) and elementary soil cover patterns maps (large scale) of the Central Russian, Kalach, and Volga Uplands are created by both traditional and digital soil mapping methods. Low-contrasting soil combinations with the background Haplic Chernozems (Loamic or Clayic, Pachic) alternating with zooturbated Haplic Chernozems (Loamic or Clayic, Pachic) on convex elements of the microtopography and Luvic Chernozems (Loamic or Clayic, Pachic) on concave elements of the microtopography prevails under conditions of thick clay loamy parent materials and free drainage. Under conditions of shallow embedding by low-permeable clayey sediments, the soil cover includes Chernozems or Chernic Phaeozems with stagnic features in some part of the soil profile or even Mollic Stagnosols. The presence of shrink-swell clays of different ages leads to the formation of Bathyvertic Chernozems, Vertic Chernozems, Vertic Chernic Phaeozems and/or Pellic Vertisols. The presence of soluble salts in the parent material leads to the development of solonetzic soil complexes consisting of Protosodic or Sodic Chernozems and different types of Solonetzes.


2021 ◽  
Author(s):  
Maxim Kharlamov ◽  
Maria Kireeva ◽  
Natalia Varentsova

<p>Over the past 20 years, the climate on the East European plain tends to be significantly warmer and drier. Winters became shorter and spring freshet’s conditions have been changed significantly. Maximum snow depth was the most important factor of spring freshet formation 30 years ago, but nowadays it has no significance at all and main factor today is melt water losses on infiltration and evaporation.</p><p>We registered a decrease in the period of stable snow accumulation (on average by 20% in the southern and southwestern parts of the East European Plain) because of the increase in winter temperatures. More often during first part of winter snow cover disappeared totally. The number of thaws and their duration at the end of the winter also increase and this leads to earlier and more prolonged melting of the snow pack. In these conditions, an extremely low spring freshet is formed. Our studies show that with the condition of an equal maximum snow depth the slow snowmelt forms the spring freshet up to 4 times less in volume than the fast melting.</p><p>Soil moisture also plays an important role in the melt water losses. The most part of the East European Plain is characterized by a decrease in soil moisture in late autumn, which indicates increased losses during snow melting period.</p><p>Still, the most significant changes in the structure of the factors of spring freshet formation are common to the southern and southwestern parts of the East European Plain. In the northern part, conservative factors still dominate, although this area is characterized by the significant increase in winter temperatures.</p><p>The study was supported by Russian Science Foundation Proj. №19-77-10032</p>


2020 ◽  
Author(s):  
Alexandra Berényi ◽  
Judit Bartholy ◽  
Rita Pongrácz

<p>It is well-known that climate change affects large scale weather patterns and local extremes all over the world as well as in Europe. These changes include the changes of precipitation occurences, amounts, and spatial patterns, which may require appropriate risk management actions. For this purpose, the first step is a thorough analysis of possible hazards associated to specific precipitation-related weather phenomena.</p><p>The primary goals of this study are (i) to examine the changes in precipitation patterns and extremes, and (ii) to explore the possible connections between changes in different lowlands across Europe. Precipitation time series are used from the E-OBS v.20 datasets on a 0.1° regular grid. Datasets are based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. Altogether 14 plain regions are selected in this study to represent different parts within Europe. More specifically, five plain regions are parts of the East European Plain, two regions are located in the Scandinavian basin, five regions are located in Western Europe, and the Pannonian Plain (including mostly Hungary) is also selected. For choosing the plains and their spatial representations, objective criteria are used, namely, the elevation remains under 200 m throughout the defined area and difference between the neighbouring gridpoints within the plain region does not exceed 40 m. Daily precipitation times series are analyzed and compared for these plain regions using various statistical tools. The results represent annual and seasonal changes in average and extreme precipitation amount as well as in the frequency of precipitation occurences. Climate indices and the occurence of extreme weather conditions including wet and dry spells are also analyzed.</p><p> </p>


2021 ◽  
pp. 123-134
Author(s):  
Y.K. Volkov

Based on works by representatives of the Marxist and the Eurasian direction, the article considers arguments “for” and “against” S. M. Solovyov’s conception of the “struggle between the forest and the steppe” as an important part of his historiological and philosophical-historical doctrine. This essay shows that the main arguments against Solovyov’s conception are connected to the interpretations of historical facts corresponding to the theoretical positions of the Marxist and Eurasian paradigms of history. They include: the thesis about the class character of the Russian state and of the state enslavement of the population; that of the subordination of the course of a nation’s history to the action of universal historical laws; that of the decisive role of geographical and ethnic factors; that of the mutual influence of the “forest” and the “steppe” on the formation of the Eurasian state. To determine the balance of arguments “for” and “against” the conception of the “struggle between the forest and the steppe,” the author proposes to use the model of a structural and hierarchical history, where there are stable and dynamic levels in space and time. The essay concludes that the geohistorical fact of the division of the East European plain into forest and steppe belts, which makes it possible to theoretically explain the premises behind the conception of the “struggle between the forest and the steppe, raises no objections from any of the critics of such a struggle. At the same time, historical facts concerning the understanding of the nature of social integrity, on the level at which the struggle took place, lead to fundamentally different theoretical interpretations. Even more discrepancies are found concerning the causes of the changes that determine the historical dynamics. As the real course of history shows, in a changing and interconnected world, such causes can actually become a global conflict of cultures.


2013 ◽  
Author(s):  
Elisabeth J. Ploran ◽  
Ericka Rovira ◽  
James C. Thompson ◽  
Raja Parasuraman

Sign in / Sign up

Export Citation Format

Share Document