In vitro Reconstitution of the S. aureus 30S Ribosomal Subunit and RbfA Factor Complex for Structural Studies

2020 ◽  
Vol 85 (5) ◽  
pp. 545-552
Author(s):  
A. G. Bikmullin ◽  
L. I. Nurullina ◽  
N. S. Garaeva ◽  
E. A. Klochkova ◽  
D. S. Blokhin ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


2019 ◽  
Vol 47 (15) ◽  
pp. 8282-8300 ◽  
Author(s):  
Jakub Zeman ◽  
Yuzuru Itoh ◽  
Zdeněk Kukačka ◽  
Michal Rosůlek ◽  
Daniel Kavan ◽  
...  

Abstract eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


2018 ◽  
Vol 70 (5) ◽  
pp. 881-893.e3 ◽  
Author(s):  
Rainer Nikolay ◽  
Tarek Hilal ◽  
Bo Qin ◽  
Thorsten Mielke ◽  
Jörg Bürger ◽  
...  

2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S25-S25
Author(s):  
Natalia Garaeva ◽  
Aydar Bikmullin ◽  
Evelina Klochkova ◽  
Shamil Validov ◽  
Marat Yusupov ◽  
...  

Background: Staphylococcus aureus (S. aureus) is one of the main human pathogens causing numerous nosocomial soft tissue infections and is among the best-known causes of bacterial infections. The bacterial 70S ribosome consists of two subunits, designated the 30S (small) and 50S (large) subunits. The small subunit (30S) consists of 16S ribosomal RNA (rRNA), from which the assembly of 30S begins, and 21 ribosomal proteins (r-proteins). The ribosome maturation factor P (RimP protein) binds to the free 30S subunit. Strains lacking RimP accumulate immature 16S rRNA, and fewer polysomes and an increased amount of unassociated 30S and 50S subunits compared to wild-type strains are observed in the ribosomal profile. Structural studies of the 30S subunit complex and the ribosome maturation factor RimP will make it possible in the future to develop an antibiotic that slows down or completely stops the translation of Staphylococcus aureus, which will complicate the synthesis and isolation of its pathogenic factors. Here we present the protocol of the in vitro reconstruction of S. aureus 30S ribosome subunit in a complex with RimP for further structural studies by cryo-electron microscopy. Methods: Recombinant RimP protein from S. aureus was expressed in E. coli and purified by Ni-NTA chromatography and size exclusion chromatography. Reconstitution of the 30S–RimP complex was performed by mixing RimP protein with 30S ribosome. Unbound RimP protein was removed by Amicon Ultra Concentration (Merk KGaA, Darmstadt, Germany) with a cut-off limit of 100 kDa. The presence of RimP protein in the resulting 30S-RimP complex was confirmed by SDS-PAGE, and the quality of the final sample was analyzed by the negative staining EM. Results: Finally, by in vitro reconstruction, the 30S-RimP complex from S. aureus was obtained for further structural studies by cryo-electron microscopy.


2020 ◽  
Vol 117 (12) ◽  
pp. 6540-6549
Author(s):  
Urban Bezeljak ◽  
Hrushikesh Loya ◽  
Beata Kaczmarek ◽  
Timothy E. Saunders ◽  
Martin Loose

The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
Maria DeLucia ◽  
Jinwoo Ahn

Abstract Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


Sign in / Sign up

Export Citation Format

Share Document