A Novel Form of Phenotypic Plasticity of the Thermal Reaction Norms for Development in the Bug Graphosoma lineatum (L.) (Heteroptera, Pentatomidae)

2019 ◽  
Vol 99 (4) ◽  
pp. 417-436
Author(s):  
E. B. Lopatina ◽  
I. A. Gusev
2010 ◽  
Vol 67 (3) ◽  
pp. 498-510 ◽  
Author(s):  
Craig F. Purchase ◽  
Ian A.E. Butts ◽  
Alexandre Alonso-Fernández ◽  
Edward A. Trippel

Phenotypic plasticity occurs when a genotype produces variable phenotypes under different environments; the shapes of such responses are known as norms of reaction. The genetic scale at which reaction norms can be determined is restricted by the experimental unit that can be exposed to variable environments. This has limited their description beyond the family level in higher organisms, thus hindering our understanding of differences in plasticity at the scale of the individual. Using a three-year common-garden experiment, we quantify reaction norms in sperm performance of individual genotypes within different families of Atlantic cod ( Gadus morhua ). Cod sperm showed phenotypic plasticity in swimming performance across temperatures (3, 6, 11, and 21 °C), but the pattern of the response depended upon how long sperm had been swimming (30, 60, 120, or 180 s), i.e., plasticity in plasticity. Sperm generally swam fastest at intermediate temperatures when first assessed at 30 s after activation. However, a significant genotype × environment interaction was present, indicating inter-individual differences in phenotypic plasticity. To our knowledge, this is the first study to describe variable sperm performance across environmental conditions as a reaction norm. The results have potential theoretical, conservation, and aquaculture implications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Jakob ◽  
Kseniya P. Vereshchagina ◽  
Anette Tillmann ◽  
Lorena Rivarola-Duarte ◽  
Denis V. Axenov-Gribanov ◽  
...  

AbstractLake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6–3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.


Oecologia ◽  
2011 ◽  
Vol 169 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Sarah E. Diamond ◽  
Joel G. Kingsolver

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52818 ◽  
Author(s):  
Simon A. Morley ◽  
Stephanie M. Martin ◽  
Robert W. Day ◽  
Jess Ericson ◽  
Chien-Houng Lai ◽  
...  

2018 ◽  
Vol 31 (7) ◽  
pp. 936-943 ◽  
Author(s):  
Erlend I. F. Fossen ◽  
Christophe Pélabon ◽  
Sigurd Einum

Sign in / Sign up

Export Citation Format

Share Document