On the formulation of problems of nonisothermal water and vapor flow through a high-permeability formation

2010 ◽  
Vol 45 (2) ◽  
pp. 230-240 ◽  
Author(s):  
A. A. Afanasyev
2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 910E-910
Author(s):  
Eric W. Gay ◽  
Randolph M. Beaudry

O2 and CO2 permeabilities were determined for experimental polyethylene polymers (Dow Plastics, Freeport, Texas) in relation to low-density polyethylene (LDPE) films for the packaging of horticultural commodities. A stainless steel flow-through permeability cell was used to determine O2 and CO2 permeabilities at 0, 5, 10, 15, 20 and 25C for the polymers. Data were fitted to the Arrhenius' relationship and the Arrhenius' constant and energy of activation were determined. In addition, flow-through containers of sealed cherry tomatoes at room temperature were used to determine ethylene permeability of the polymers. The new polymers were several times more permeable than LDPE to O2, CO2, and ethylene. The results were incorporated into a model for predicting O2 concentrations over a temperature range for sliced apple fruit. The greater permeability of the new polymers will improve control of O2 and CO2 in modified atmosphere packages and enhance flexibility of package design.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Tsuyoshi Nohara ◽  
Masaoki Uno ◽  
Noriyoshi Tsuchiya

This geological study utilized electron probe microanalysis of granitic rocks to evaluate traces of hydrothermal fluid activity. Amphibole-plagioclase thermometry was applied to estimate the temperature of a glassy vein as approximately 700°C. The results of mesoscopic and microscopic observations of the rock core obtained through borehole investigations revealed that the track of supercritical fluid flow was microfracture filling with hornblende and plagioclase. Grain-boundary microfractures and parallel microfractures were recognized as traces formed by the limited activity of the supercritical fluid immediately after granite setting in the Late Cretaceous. The current high permeability of a borehole in and around the track of supercritical fluid flow was recognized to be related to the microfracture network. In order to investigate the enhancement of permeability activated by the supercritical fluid flow through granite, the results of this geological study and existing data from in situ permeability tests were analysed. Various fractures in and around the trace of a self-sealing zone were investigated for another borehole rock core. The trace of the self-sealing zone, which was composed of filling textures associated with the supercritical fluid, corresponded to the current low-permeability section of the borehole. Representative types were proposed for simple classification based on the characteristics of fractures and the permeability data of each test section. A high-angle fracture of chlorite filling in combination with an open fracture and the development of a sericite-filling fracture network including a low-angle open fracture were recognized as characteristics of high-permeability types. The results of this study indicate that the enhancement of permeability was activated by supercritical fluid flow through granite.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3267
Author(s):  
Donald O. Rosenberry ◽  
José Manuel Nieto López ◽  
Richard M. T. Webb ◽  
Sascha Müller

The efficiency of seepage meters, long considered a fixed property associated with the meter design, is not constant in highly permeable sediments. Instead, efficiency varies substantially with seepage bag fullness, duration of bag attachment, depth of meter insertion into the sediments, and seepage velocity. Tests conducted in a seepage test tank filled with isotropic sand with a hydraulic conductivity of about 60 m/d indicate that seepage meter efficiency varies widely and decreases unpredictably when the volume of the seepage bag is greater than about 65 to 70 percent full or less than about 15 to 20 percent full. Seepage generally decreases with duration of bag attachment even when operated in the mid-range of bag fullness. Stopping flow through the seepage meter during bag attachment or removal also results in a decrease in meter efficiency. Numerical modeling indicates efficiency is inversely related to hydraulic conductivity in highly permeable sediments. An efficiency close to 1 for a meter installed in sediment with a hydraulic conductivity of 1 m/d decreases to about 60 and then 10 percent when hydraulic conductivity is increased to 10 and 100 m/d, respectively. These large efficiency reductions apply only to high-permeability settings, such as wave- or tidally washed coarse sand or gravel, or fluvial settings with an actively mobile sand or gravel bed, where low resistance to flow through the porous media allows bypass flow around the seepage cylinder to readily occur. In more typical settings, much greater resistance to bypass flow suppresses small changes in meter resistance during inflation or deflation of seepage bags.


1984 ◽  
Vol 106 (4) ◽  
pp. 865-870 ◽  
Author(s):  
N. K. Tutu ◽  
T. Ginsberg ◽  
J. C. Chen

Pressure drop and void fraction measurements in two-phase (air–water) flow through porous beds of randomly packed spheres have been used to determine the interfacial gas–liquid drag and the gas–solid drag for the case of zero net liquid flux through the bed. The results, presented for beds of 3.18-, 6.35-, and 12.7-mm spheres, show that the interfacial gas–liquid drag term is of the same order as the gas-solid drag term when the particle size is greater than 6 mm.


Geology ◽  
2004 ◽  
Vol 32 (4) ◽  
pp. 349 ◽  
Author(s):  
A.C. Rust ◽  
K.V. Cashman ◽  
P.J. Wallace

1953 ◽  
Author(s):  
Henry E Robinson ◽  
F J Powlitch ◽  
M A Barron ◽  
P R Achenbach

Sign in / Sign up

Export Citation Format

Share Document