Modeling the dynamics of sublimation of fractured rocks in the lithospheric mantle wedge beneath volcanoes of the Avacha group (Kamchatka)

2017 ◽  
Vol 55 (3) ◽  
pp. 231-250 ◽  
Author(s):  
V. N. Sharapov ◽  
G. V. Kuznetsov ◽  
V. P. Logachev ◽  
V. K. Cherepanova ◽  
A. N. Cherepanov
2020 ◽  
Vol 105 (8) ◽  
pp. 1191-1203
Author(s):  
Yanfei Zhang ◽  
Xuran Liang ◽  
Chao Wang ◽  
Zhenmin Jin ◽  
Lüyun Zhu ◽  
...  

Abstract Sedimentary diapirs can be relaminated to the base of the lithosphere during slab subduction, where they can interact with the ambient lithospheric mantle to form variably metasomatized zones. Here, high-pressure experiments in sediment-harzburgite systems were conducted at 1.5–2.5 GPa and 800–1300 °C to investigate the interaction between relaminated sediment diapirs and lithospheric mantle. Two end-member processes of mixed experiments and layered (reaction) experiments were explored. In the first end-member, sediment and harzburgite powders were mixed to a homogeneous proportion (1:3), whereas in the second, the two powders were juxtaposed as separate layers. In the first series of experiments, the run products were mainly composed of olivine + orthopyroxene + clinopyroxene + phlogopite in subsolidus experiments, while the phase assemblages were then replaced by olivine + orthopyroxene + melt (or trace phlogopite) in supersolidus experiments. Basaltic and foiditic melts were observed in all supersolidus mixed experiments (~44–52 wt% SiO2 at 1.5 GPa, ~35–43 wt% SiO2 at 2.5 GPa). In the phlogopite-rich experiment (PC431, 1.5 GPa and 1100 °C), the formed melts had low alkali contents (~<2 wt%) and K2O/Na2O ratios (~0.4–1.1). In contrast, the quenched melt in phlogopite-free/poor experiments showed relatively higher alkali contents (~4–8 wt%) and K2O/Na2O ratios (~2–5). Therefore, the stability of phlogopite could control the bulk K2O and K2O/Na2O ratios of magmas derived from the sediment-metasomatized lithospheric mantle. In layered experiments, a reaction zone dominated by clinopyroxene + amphibole (or orthopyroxene) was formed because of the reaction between harzburgite and bottom sediment-derived melts (~62.5–67 wt% SiO2). The total alkali contents and K2O/Na2O ratios of the formed melts were about 6–8 wt% and 1.5–3, respectively. Experimentally formed melts from both mixed and reaction experiments were rich in large ion lithosphile elements and displayed similar patterns with natural potassium-rich arc lavas from oceanic subduction zones (i.e., Mexican, Sunda, Central American, and Aleutian). The experimental results demonstrated that bulk sediment diapirs, in addition to sediment melt, may be another possible mechanism to transfer material from a subducting slab to an upper mantle wedge or lithospheric mantle. On the other hand, the breakdown of phlogopite may play an important role in the mantle source that produces potassium-rich arc lavas in subduction zones.


2020 ◽  
Author(s):  
Giulia Consuma ◽  
Roberto Braga ◽  
Marco L. Fiorentini ◽  
Laure Martin ◽  
Peter Tropper ◽  
...  

<p>Orogenic peridotites associated with high-grade felsic rocks record mass exchange between crust and mantle reservoirs at convergent plate margins. In this geodynamic framework, fluids released by submerging slabs can mobilize redox-sensitive elements such as carbon (C) and sulfur (S) and percolate the mantle wedge, eventually forming hydrate minerals associated with carbonate and sulfide phases at appropriate T, P and f O<sub>2</sub> conditions. The introduction of sulfur into the sub-continental lithospheric mantle (SCLM) wedge and its mobilization at grain-scale can be investigated by means of in situ δ<sup>34</sup>S analyses of mantle wedge sulfides, which may have inherited the composition of the fluid sources. To date, the impact of the S transfer through the SCLM wedge is poorly known and limited in situ S isotope values of sulfides from mantle wedge peridotite are available in literature. Our study focuses on the Ulten Zone (UZ) orogenic-garnet peridotites, which provide an ideal case to investigate the S mobilization through the SCLM wedge and the effects of crustal fluids on the sulfide δ<sup>34</sup>S signature, especially during the exhumation stage. We therefore integrate a well-constrained paragenesis with mineral chemistry and in situ S isotope signature of sulfides. The UZ peridotites were involved in a collisional setting during the Variscan orogenesis, recording HP-eclogite-facies conditions and exhumation after their incorporation in a mélange with the associated garnet-kyanite gneisses. A suite of coarse to fine-grained peridotites was investigated in order to cover all the metasomatic stages preserved in these rocks, considering the grade of serpentinization and the occurrence of carbonates. Microstructural observations and major element compositions indicate that pentlandite (± chalcopyrite ± chalcocite ± sphalerite) is the ubiquitous primary sulfide, which is commonly replaced by secondary heazlewoodite and millerite in medium to highly serpentinized peridotite. Pentlandite occurs in different textural positions related to several metasomatic stages: (i) polycrystalline aggregates (pentlandite + Cl-apatite + phlogopite + ilmenite + calcite-brucite intergrowths) included in spinel (in garnet); (ii) interstitial in matrix; (iii) in carbonate and serpentine veins. Overall, the S isotope signature of pentlandite exhibits a relatively narrow range between -1.62 and +3.76 ‰. The relatively low S isotope values require a mantle-like source for the metasomatizing fluids enriched in sulfur, with possible contamination with fluids of other different sources. These new results show that sulfur was introduced into the lithospheric mantle and mobilized by influxes of late metasomatic fluids, in part related to the serpentinization, and provide additional constraints on the S isotope composition of the SCLM wedge.</p>


2020 ◽  
Author(s):  
Nestor G. Cerpa ◽  
José Alberto Padrón-Navarta ◽  
Diane Arcay

<p>The subduction of water via lithospheric-mantle hydrous phases have major implications for the generation of arc and back-arc volcanism, as well as for the global water cycle. Most of the current numerical models use Perple_X [Connolly et al., 2009] to quantify water release from the slab and subsequent fluid migration in the mantle wedge. At UHP conditions, the phase diagrams generated with this thermodynamic code suggest that the breakdown of serpentine and chlorite leads to the near complete dehydration of the lithospheric mantle before reaching a 200-km depth. Laboratory experiments, however, have observed the stability of the 10-Å phase and the phase E in natural bulk compositions, which may hold moderate amounts of water, beyond the stability field of serpentine and chlorite [Fumagalli and Poli, 2005; Maurice et al., 2018]. Here, using 2D thermo-mechanical models, we explore to what extent the presence of these hydrous phases may favor a deeper subduction of water than those predicted by Perple_X.</p><p>We perform end-member models in terms of slab temperature and thickness of hydrated lithospheric mantle entering at trench. The computed geotherms within the uppermost subducted mantle show that the stability field of mantle hydrous phases around 600-800°C and 6-8 GPa is crucial for predictions of water fluxes. We point out that the lack of systematic experiments at these P-T conditions, as well as the absence of 10-Å and E phases in current thermodynamic databases, prevent accurate estimates of deep water transfers. We nonetheless build a phase diagram based on current experimental constraints that includes approximations of their stability field and qualitatively discuss the potential implications for fluid migration in the back-arc mantle wedge and water fluxes.</p>


2020 ◽  
pp. 1-32
Author(s):  
Ahmad Ahmadvand ◽  
Mohammad Reza Ghorbani ◽  
Mir Ali Asghar Mokhtari ◽  
Yi Chen ◽  
William Amidon ◽  
...  

Abstract Significant uncertainty remains regarding the exact timing and nature of subduction events during the closure of the Tethyan seas in what is now NW Iran. This study thus presents new geochemical compositions and U–Pb ages for a suite of volcanic rocks emplaced during Cenozoic volcanism in the west Alborz Magmatic Assemblage, which is commonly regarded as the back-arc of the Neotethyan magmatism in Central Iran. The subalkali basalts and andesites are dated to 57 ± 1.2 Ma, and are likely derived from a supra-subduction mantle wedge. Later, trachytic A-type rocks erupted from ~42 to 25 Ma during an anorogenic (extensional) stage triggered by slab retreat and associated asthenospheric mantle influx. A-type melts were at least partly concurrent with lithospheric mantle magmatism implied by eruption of subalkali basalts–andesites around 26–24 Ma. Next, Amp-Bt trachybasaltic volcanism with high-Nb basaltic affinity at ~19 Ma likely records slab deepening and slab partial melting, which reacted with the mantle wedge to produce the source material for the high-Nb basalts. Sr–Nd isotopic ratios for SE Ahar mafic as well as A-type rocks imply rather enriched mantle source(s). Some crustal contamination is implied by the presence of inherited zircons dominated by those derived from Neoproterozoic–Cambrian basement rocks and Carboniferous magmatism. Rhyolitic rocks with adakitic affinity probably mark the final volcanism in the study area. The adakitic rocks show crustal signatures such as high K and Th, probably formed as a consequence of higher temperature gradients, at crustal levels, imposed by both slab and mantle partial melts.


2016 ◽  
Vol 468 (1) ◽  
pp. 438-440 ◽  
Author(s):  
G. N. Savelieva ◽  
Yu. N. Raznitsin ◽  
M. V. Merkulova

Lithos ◽  
2021 ◽  
pp. 106327
Author(s):  
Song-Yue Yu ◽  
Yi-Gang Xu ◽  
Kang-Jun Huang ◽  
Jiang-Bo Lan ◽  
Lie-Meng Chen ◽  
...  

Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1179-1207
Author(s):  
Ann C. Timmermans ◽  
Brian L. Cousens ◽  
Christopher D. Henry

Abstract Processes linked to shallow subduction, slab rollback, and extension are recorded in the whole-rock major-, trace-element, and Sr, Nd, and Pb isotopic compositions of mafic magmatic rocks in both time and space over southwestern United States. Eocene to Mio-Pliocene volcanic rocks were sampled along a transect across the west-central Great Basin (GB) in Nevada to the Ancestral Cascade Arc (ACA) in the northern Sierra Nevada, California (∼39°–40° latitude), which are interpreted to represent a critical segment of a magmatic sweep that occurred as a result of subduction from east-northeast convergence between the Farallon and North American plates and extension related to the change from a convergent to a transform margin along the western edge of North America. Mafic volcanic rocks from the study area can be spatially divided into three broad regions: GB (5–35 Ma), eastern ACA, and western ACA (2.5–16 Ma). The volcanic products are dominantly calc-alkalic but transition to alkalic toward the east. Great Basin lavas erupted far inland from the continental margin and have higher K, P, Ti, and La/Sm as well as lower (Sr/P)pmn, Th/Rb, and Ba/Nb compared to ACA lavas. Higher Pb isotopic values, combined with lower Ce/Ce* and high Th/Nb ratios in some ACA lavas, are interpreted to come from slab sediment. Mafic lavas from the GB and ACA have overlapping 87Sr/86Sr and 143Nd/144Nd values that are consistent with mantle wedge melts mixing with a subduction-modified lithospheric mantle source. Eastern and western ACA lavas largely overlap in age and elemental and isotopic composition, with the exception of a small subset of lavas from the westernmost ACA region; these lavas show lower 87Sr/86Sr at a given 143Nd/144Nd. Results show that although extension contributes to melting in some regions (e.g., selected lavas in the GB and Pyramid Lake), chemical signatures for most mafic melts are dominated by subduction-related mantle wedge and a lithospheric mantle component.


2018 ◽  
Vol 470 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Pauline Chenin ◽  
Suzanne Picazo ◽  
Suzon Jammes ◽  
Gianreto Manatschal ◽  
Othmar Müntener ◽  
...  

AbstractAlthough the Wilson cycle is usually considered in terms of wide oceans floored with normal oceanic crust, numerous orogens result from the closure of embryonic oceans. We discuss how orogenic and post-orogenic processes may be controlled by the size/maturity of the inverted basin. We focus on the role of lithospheric mantle in controlling deformation and the magmatic budget. We describe the physical properties (composition, density, rheology) of three types of mantle: inherited, fertilized and depleted oceanic mantle. By comparing these, we highlight that fertilized mantle underlying embryonic oceans is mechanically weaker, less dense and more fertile than other types of mantle. We suggest that orogens resulting from the closure of a narrow, immature extensional system are essentially controlled by mechanical processes without significant thermal and lithological modification. The underlying mantle is fertile and thus has a high potential for magma generation during subsequent tectonic events. Conversely, the thermal state and lithology of orogens resulting from the closure of a wide, mature ocean are largely modified by subduction-related arc magmatism. The underlying mantle wedge is depleted, which may inhibit magma generation during post-orogenic extension. These end-member considerations are supported by observations derived from the Western Europe–North Atlantic region.


2018 ◽  
Vol 19 (10) ◽  
pp. 3844-3869 ◽  
Author(s):  
McKensie L. Kilgore ◽  
Anne H. Peslier ◽  
Alan D. Brandon ◽  
William M. Lamb

Sign in / Sign up

Export Citation Format

Share Document