Analysis of the Maximum Principal Stress Directions in the Himalayas: A Remote Sensing Based Approach

Geotectonics ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. 83-93
Author(s):  
S. Nath ◽  
R. S. Chatterjee ◽  
S. P. Mohanty ◽  
A. Sharma ◽  
A. V. Prasad
1967 ◽  
Vol 4 (2) ◽  
pp. 299-321 ◽  
Author(s):  
D. K. Norris

The Queensway folds are an anticline–syncline pair in layered limestone and shale of the Ottawa Formation in the Ottawa – St. Lawrence Lowlands. They are parallel, flexural-slip folds with horizontal axes trending northwest, parallel to the surface trace of the Gloucester fault.Five principal fracture subpatterns were recognized in the fold-pair, caused by at least four geometrically distinct stress fields. The principal stress directions at failure for all five subpatterns coincided, moreover, with the three orthogonal fabric axes, and the maximum principal stress was either parallel or perpendicular to the fold axes and to the Gloucester fault.Slickenside striae on bedding and on fractures at an angle to bedding indicate two principal kinematic patterns in the fold-pair; the one arises from motion in the deformation plane as a consequence of the folding and the other from strike-slip motion perpendicular to that plane as a consequence of displacement on the Gloucester fault.Slickensides indicate that each bed was free to move relative to adjacent ones during folding and that the fundamental structural unit in flexural-slip folding is the bed. Model studies support the field data and indicate that the sense and magnitude of interbed slip in any structural position is dependent upon an integral of conditions throughout the fold-pair and that the fundamental fold unit is the anticline–syncline pair.


2021 ◽  
Vol 11 (15) ◽  
pp. 6900
Author(s):  
Su-Kyung Sung ◽  
Sang-Won Han ◽  
Byeong-Seok Shin

Skinning, which is used in skeletal simulations to express the human body, has been weighted between bones to enable muscle-like motions. Weighting is not a form of calculating the pressure and density of muscle fibers in the human body. Therefore, it is not possible to express physical changes when external forces are applied. To express a similar behavior, an animator arbitrarily customizes the weight values. In this study, we apply the kernel and pressure-dependent density variations used in particle-based fluid simulations to skinning simulations. As a result, surface tension and elasticity between particles are applied to muscles, indicating realistic human motion. We also propose a tension yield condition that reflects Tresca’s yield condition, which can be easily approximated using the difference between the maximum and minimum values of the principal stress to simulate the tension limit of the muscle fiber. The density received by particles in the kernel is assumed to be the principal stress. The difference is calculated by approximating the moment of greatest force to the maximum principal stress and the moment of least force to the minimum principal stress. When the density of a particle increases beyond the yield condition, the object is no longer subjected to force. As a result, one can express realistic muscles.


Author(s):  
Toshiyuki Sawa ◽  
Yuya Hirayama ◽  
He Dan

The stress wave propagation and stress distribution in scarf adhesive joints have been analyzed using three-dimensional finite element method (FEM). The FEM code employed was LS-DYNA. An impact tensile loading was applied to the joint by dropping a weight. The effect of the scarf angle, Young’s modulus of the adhesive and adhesive thickness on the stress wave propagations and stress distributions at the interfaces have been examined. As the results, it was found that the point where the maximum principal stress becomes maximum changes between 52 degree and 60 degree under impact tensile loadings. The maximum value of the maximum principal stress increases as scarf angle decreases, Young’s modulus of the adhesive increases and adhesive thickness increases. In addition, Experiments to measure the strains and joint strengths were compared with the calculated results. The calculated results were in fairly good agreements with the experimental results.


2013 ◽  
Vol 404 ◽  
pp. 365-370 ◽  
Author(s):  
Qi Tao Pei ◽  
Hai Bo Li ◽  
Ya Qun Liu ◽  
Jun Gang Jiang

During the construction of hydropower station, the change of slope gradient in river valleys often takes place. In order to study influence of slope gradient change on distribution rule of geostress field, the three dimensional unloading models under different slope gradients were established by finite difference software (FLAC3D). After numerical simulation, the results were as follows: (1) The phenomenon of stress concentration at the bottom of river valleys was obvious, which appeared the typical stress fold. Both the depth of stress concentration zone and the principal stress values significantly increased with the increment of slope gradient. (2) Maximum principal stress values increased less in shallow part of upper bank slope (low stress zone) but increased more in the nearby slope foot with the increment of slope gradient, causing great difference in geostress field of bank slope. (3) There was some difference in released energy of bank slope due to slope gradient change in river valleys. In order to distinguish the difference, stress relief zone was further divided into stress stably released zone and stress instability released zone. Finally, take Ada dam area of the western route project of South-to-North Water Transfer as an example, the results by numerical simulation were reliable through comparing the distribution rule of geostress field for the dam, which could provide important reference for stability of the design and construction of steep and narrow river valleys.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Tarcisio José de Arruda Paes Junior ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Viviane Maria Gonçalves de Figueiredo ◽  
Alexandre Luiz Souto Borges ◽  
...  

Purpose: To evaluate the effect of fibromucosa height on the stress distribution and displacement of mandibular total prostheses during posterior unilateral load, posterior bilateral load and anterior guidance using the finite element analysis (FEA). Material and methods: 3D virtual models were made to simulate the stress generated during different mandibular movements in a total prosthesis. The contacts were simulated according to the physiology, being considered perfectly bonded between cortical and medullar bones; and between cortical bone and mucosa. Non-linear frictional contact was used for the total prosthesis base and fibromucosa, allowing the prosthesis to slide over the tissue. The cortical bone base was fixed and the 100 N load was applied as unilateral load, posterior bilateral load and anterior guidance simulation. The required results were for maximum principal stress (MPa), microstrain (mm/mm) and total displacement (mm). The numerical results were converted into colorimetric maps and arranged according to corresponding scales. Results: The stress generated in all situations was directly proportional to the fibromucosa height. The maximum principal stress results demonstrated greater magnitude for anterior guidance, posterior unilateral and posterior bilateral, respectively. Only posterior unilateral load demonstrated an increase in bone microstrain, regardless of the fibromucosa height. Prosthesis displacement was lower under posterior bilateral loading. Conclusion: Posterior bilateral loading is indicated for total prosthesis because it allows lower prosthesis displacement, lower stress concentration at the base of the prosthesis and less bone microstrain.   Keywords Finite element analysis; Occlusion; Total prosthesis.


1995 ◽  
Vol 85 (5) ◽  
pp. 1513-1517
Author(s):  
Z.-M. Yin ◽  
G. C. Rogers

Abstract Earthquake faulting results in stress drop over the rupture area. Because the stress drop is only in the shear stress and there is no or little stress drop in the normal stress on the fault, the principal stress directions must rotate to adapt such a change of the state of stress. Using two constraints, i.e., the normal stress on the fault and the vertical stress (the overburden pressure), which do not change before and after the earthquake, we derive simple expressions for the rotation angle in the σ1 axis. For a dip-slip earthquake, the rotation angle is only a function of the stress-drop ratio (defined as the ratio of the stress drop to the initial shear stress) and the angle between the σ1 axis and the fault plane, but for a strike-slip earthquake the rotation angle is also a function of the stress ratio. Depending on the faulting regimes, the σ1 axis can either rotate toward the direction of fault normal or rotate away from the direction of fault normal. The rotation of the stress field has several important seismological implications. It may play a significant role in the generation of heterogeneous stresses and in the occurrence and distribution of aftershocks. The rotation angle can be used to estimate the stress-drop ratio, which has been a long-lasting topic of debate in seismology.


2009 ◽  
pp. 516-516-25 ◽  
Author(s):  
JRF Arthur ◽  
S Bekenstein ◽  
JT Germaine ◽  
CC Ladd

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. KS95-KS104 ◽  
Author(s):  
Zhenhua He ◽  
Benchun Duan

Whether the tip stresses around a dynamically propagating hydraulic fracture (HF) could activate a bedding plane (BP) or not is an important question for HF propagation and microseismicity generation. BP slip has been proposed to be one main source of microseismicity during HF treatments in unconventional reservoirs. However, a BP perpendicular to a principal stress direction is unlikely to be activated in a simple geomechanical model. We have applied a dynamic finite-element geomechanics method to examine the induced dynamic shear stress and the activation of BPs that are perpendicular to the HF based on the Cotton-Valley tight-sand reservoir properties. We work in a 2D vertical-plane framework. The induced dynamic stresses around a HF tip could be significant. We explore three different scenarios for the BP activation. In the first scenario, an HF is dynamically propagating toward two symmetric BPs, but has not touched them yet. We find that only low-strength BPs can be activated in this scenario. In the second scenario, an HF dynamically propagates toward two symmetric BPs and then it crosses them by a short distance. The BPs could be more easily activated in this scenario compared with the first scenario. The slip length and maximum slip decrease with cohesion, critical slip distance, or maximum principal stress. In the third scenario, an HF dynamically propagates toward two symmetric BPs, and then fluid invasion into the BPs occurs after the HF touches them. Large shear slippage and slip length happen in this scenario because fluid invasion weakens the BPs. In all of the scenarios, different senses of shear could occur along the BPs and a rupture typically propagates bilaterally from the initiation point on the BPs.


Sign in / Sign up

Export Citation Format

Share Document