Myosatellite Cells under Gravitational Unloading Conditions

2021 ◽  
Vol 57 (4) ◽  
pp. 852-861
Author(s):  
N. A. Vilchinskaya ◽  
B. S. Shenkman
Author(s):  
Enrico De Martino ◽  
Sauro Emerick Salomoni ◽  
Paul W. Hodges ◽  
Julie Hides ◽  
Kirsty Lindsay ◽  
...  

This study investigated whether artificial gravity (AG), induced by short-radius centrifugation, mitigated deterioration in standing balance and anticipatory postural adjustments (APAs) of trunk muscles following 60-day head-down tilt bed rest. Twenty-four participants were allocated to one of three groups: control group (N=8); 30 minutes continuous AG daily (N=8); intermittent 6x5 minutes AG daily (N=8). Before and immediately after bed rest, standing balance was assessed in four conditions: eyes open and closed on both stable and foam surfaces. Measures including sway path, root-mean-square, and peak sway velocity, sway area, sway frequency power, and sway density curve were extracted from the centre of pressure displacement. APAs were assessed during rapid arm movements using intramuscular or surface electromyography electrodes of the rectus abdominis, obliquus externus and internus abdominis, transversus abdominis, erector spinae at L1, L2, L3, and L4 vertebral levels, and deep lumbar multifidus muscles. The relative latency between the EMG onset of the deltoid and each of the trunk muscles was calculated. All three groups had poorer balance performance in most of the parameters (all P<0.05) and delayed APAs of the trunk muscles following bed rest (all P<0.05). Sway path and sway velocity were deteriorated, and sway frequency power was less in those who received intermittent AG than in the control group (all P<0.05), particularly in conditions with reduced proprioceptive feedback. These data highlight the potential of intermittent AG to mitigate deterioration of some aspects of postural control induced by gravitational unloading, but no protective effects on trunk muscle responses were observed.


1994 ◽  
Vol 266 (5) ◽  
pp. C1257-C1262 ◽  
Author(s):  
Y. Ohira ◽  
K. Saito ◽  
T. Wakatsuki ◽  
W. Yasui ◽  
T. Suetsugu ◽  
...  

Responses of beta-adrenoceptor (beta-AR) in rat soleus to gravitational unloading and/or changes in the levels of phosphorus compounds by feeding either creatine or its analogue beta-guanidinopropionic acid (beta-GPA) were studied. A decrease in the density of beta-AR (about -35%) was induced by 10 days of hindlimb suspension, but the affinity of the receptor was unaffected. Suspension unloading tended to increase the levels of adenosine triphosphate and phosphocreatine and decrease inorganic phosphate. Even without unloading, the beta-AR density decreased after an oral creatine supplementation (about -20%), which also tended to elevate the high-energy phosphate levels in muscle. However, an elevation of beta-AR density was induced (about +36%) after chronic depletion of high-energy phosphates by feeding beta-GPA (about +125%). Data suggest that the density of beta-AR in muscle is elevated if the high-energy phosphate contents are chronically decreased and vice versa. However, it may not be directly related to the degree of muscle contractile activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
I. V. Ogneva

The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
S Marlene Grenon ◽  
Jesus Aguado-Zuniga ◽  
Michael Conte ◽  
Millie Hughes-Fulford

Objectives: Mechanical forces including gravity affect mechanotransduction and subsequent cell function. The goal of this study was to investigate the impact of mechanical unloading (MU) and loading (ML) of endothelial cells (ECs) with microgravity and hypergravity respectively, with the hypothesis that MU alters expression of inflammatory and adhesion molecule gene expression and these changes are reversed by ML. Methods: Human umbilical vascular endothelial cells (HUVECs) grown to confluency were studied. A desktop random positioning machine and a gravitational cell-loading apparatus provided MU and ML conditions, respectively. The experimental conditions included: 1) controls exposed to 1-gravity environment for 24 h (CL), 2) MU for 24 hours, 3) MU for 24 hours with three 30-minutes periods of ML of 12-gravity (MU/ML). Gene expression was studied with reverse transcription followed by real-time quantitative polymerase chain reaction (qRTPCR). Results: MU led to a significant decrease in gene expression of the adhesion molecules ICAM-1, VCAM-1, E-Selectin, as well as TNF-α, IL-6 and VEGF. In contrast, NOS-3, Caveolin-1 and -2 were significantly increased with MU. The changes observed in gene expression with MU were reversed by gravitational mechanical loading (MU/ML). Conclusions: Gravitational MU decreases inflammatory and adhesion molecule gene expression and these changes are reversed by short periods of ML. This points towards the importance of gravitational loading in ECs function and cellular interactions.


BIOPHYSICS ◽  
2006 ◽  
Vol 51 (5) ◽  
pp. 811-816
Author(s):  
A. M. Mukhina ◽  
A. V. Zheleznyakova ◽  
Yu. N. Kitina ◽  
B. S. Shenkman ◽  
T. L. Nemirovskaya

2003 ◽  
Vol 1642 (3) ◽  
pp. 173-179 ◽  
Author(s):  
Sofia I.M. Carlsson ◽  
Maria T.S. Bertilaccio ◽  
Erica Ballabio ◽  
Jeanette A.M. Maier

Sign in / Sign up

Export Citation Format

Share Document