Pyrrhotite Biooxidation by Moderately Thermophilic Acidophilic Microorganisms

Microbiology ◽  
2020 ◽  
Vol 89 (5) ◽  
pp. 510-519
Author(s):  
A. G. Bulaev
Microbiology ◽  
2020 ◽  
Vol 89 (4) ◽  
pp. 413-424
Author(s):  
Yu. A. Elkina ◽  
E. A. Melnikova ◽  
V. S. Melamud ◽  
A. G. Bulaev

2022 ◽  
Author(s):  
Aleksandr Bulaev

The goal of this research was to study pyrite (FeS2 ) bioleaching by a strain of the genus Acidiplasma under different conditions (temperature, pH) to evaluate the potential role of Acidiplasma representatives in biooxidation of this sulfide mineral. To compare the role of Acidiplasma archaea in pyrite biooxidation with other acidophilic microorganisms, the experiments were also performed with representatives of othergroups of microorganisms predominant in biohydrometallurgical processes.Pure and mixed cultures of moderately thermophilic acidophilic microorganisms, including strains Acidithiobacillus caldus MBC-1, Sulfobacillusthermosulfidooxidans VKMV 1269T and Acidiplasmasp. MBA-1, were used. The experiments were carried out in flasks with 100 mL of mineral nutrient medium supplemented with 0.02% yeast extract and 1 g of pyrite on a rotary shaker for 20 days. Bioleaching was performed at 45, 55, and 60∘С. The results demonstrated that the representatives of the genus Acidiplasmaprovided a comparatively higher rate of pyrite bioleaching at high temperatures (55 and 60∘C) and low pH of the medium (1.0). Thus, according to the results, strains of thegenus Acidiplasma may provide a high rate of pyrite bioleaching at low levels ofpH. Therefore, the results suggest that archaea of the genus Acidiplasma may be promising microorganisms to improve bioleaching processes with an increase in the operational temperature, which is usually maintained at 40–45∘C in industrial-scale reactors. Keywords: biomining, bioleaching, acidophilic microorganisms, sulfide minerals, pyrite


2015 ◽  
Vol 1130 ◽  
pp. 396-399
Author(s):  
Suzanne M. Rea ◽  
Naomi J. Boxall ◽  
Jian Li ◽  
Christina Morris ◽  
Anna H. Kaksonen

The efficiency of chalcopyrite bioleaching in a high sulfate background was evaluated using acidophilic microorganisms adapted to sulfate. The concentration of magnesium sulfate added to mesophilic, moderately thermophilic and thermophilic bioleaching tests was equivalent to 100, 40 and 80 g L-1SO42-, respectively. Biological copper extraction was highest at 45 °C (67 %), followed by 60 °C (54 %) and 30 °C (16 %). Quantitative x-ray diffraction (QXRD) analysis of the ROM ore and bioleached residues revealed the complete disappearance of pyrrhotite and a significant reduction of pyrite at all temperatures. Significant chalcopyrite was leached at 45 and 60 °C; however, no chalcopyrite was leached at 30 °C. As the bioleach did not plateau after 31 days, it is possible that higher copper yields may have been achieved with prolonged leaching.


2015 ◽  
Vol 1130 ◽  
pp. 359-362 ◽  
Author(s):  
Maxim I. Muravyov ◽  
Natalya V. Fomchenko ◽  
Tamara F. Kondrat'eva

A bioprocess for oxide-sulfide copper flotation concentrates has been proposed. It includes: i) chemical step – leaching with sulfuric acid solution and subsequent high temperature ferric leaching with microbially produced Fe3+-containing solution, and ii) biological step – bioregeneration of ferric iron along with additional biooxidation of the sulfide minerals using moderately thermophilic acidophilic microorganisms. The flotation copper concentrates contained 27.0–37.4% copper as sulfide (digenite, bornite, etc.) and oxide (malachite, azurite, tenorite, etc.) minerals. The acid leaching under batch conditions at 50°C and pH 1.2 during 22 hours led to 40.6% of copper recovery from the concentrate. Subsequent ferric leaching of the acid leach residue at 80°C, pulp density 9%, initial concentration of Fe3+ 30.7 g/L, and pH 1.2–1.3 during 7 hours increased the total copper recovery to 94.5%. Bioregeneration of the Fe3+ was conducted using moderately thermophilic microorganisms including bacteria of the genus Sulfobacillus at 40°C in the presence of 3% leach residue. The average ferrous iron biooxidation rate and total copper recovery within 2 days were 1.0 g/L∙h and 97%, respectively.Leaching of copper under semi-continuous conditions with bioregeneration of Fe3+ at 40°C was studied. It was found that copper recovery achieved 90% within 22 hours and the average oxidation rate of ferrous iron was up to 0.95 g/L·h.


2010 ◽  
Vol 56 (10) ◽  
pp. 803-808 ◽  
Author(s):  
Tatiana Y. Dinarieva ◽  
Anna E. Zhuravleva ◽  
Oksana A. Pavlenko ◽  
Iraida A. Tsaplina ◽  
Alexander I. Netrusov

The iron-oxidizing system of a moderately thermophilic, extremely acidophilic, gram-positive mixotroph, Sulfobacillus sibiricus N1T, was studied by spectroscopic, high-performance liquid chromatography and inhibitory analyses. Hemes B, A, and O were detected in membranes of S. sibiricus N1T. It is proposed that the electron transport chain from Fe2+ to O2 is terminated by 2 physiological oxidases: aa3-type cytochrome, which dominates in the early-exponential phase of growth, and bo3-type cytochrome, whose role in iron oxidation becomes more prominent upon growth of the culture. Both oxidases were sensitive to cyanide and azide. Cytochrome aa3 was more sensitive to cyanide and azide, with Ki values of 4.1 and 2.5 µmol·L–1, respectively, compared with Ki values for cytochrome bo3, which were 9.5 µmol·L–1 for cyanide and 7.0 µmol·L–1 for azide. This is the first evidence for the participation of a bo3-type oxidase in ferrous iron oxidation. The respiratory chain of the mixotroph contains, in addition to the 2 terminal oxidases, a membrane-bound cytochrome b573.


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 31
Author(s):  
Sachiko Nakamura ◽  
Norio Kurosawa

Lignocellulosic biomass comprises cellulose, hemicellulose, and lignin and is a potential source of fuels and chemicals. Although this complex biomass is persistent, it can be cooperatively decomposed by a microbial consortium in nature. In this study, a coculture of the moderately thermophilic bacteria Thermobifida fusca and Ureibacillus thermosphaericus was used for biodegradation of rice chaff. The bacterial strains were incubated in modified Brock’s basal salt medium (pH 8.0) supplemented with yeast extract and rice chaff at 50 °C for 7 days. The concentration of reducing sugars and the enzymatic activities of laccase, lignin peroxidase, cellulase, and xylanase in the supernatant of the culture medium were measured every day. The concentrations of reducing sugars in solo cultures of T. fusca and U. thermosphaericus and a mixed culture of the two strains after 7 days of incubation were 0.047, 0.040, and 0.195 mg/mL, respectively, indicating that the decomposition of rice chaff was enhanced in the coculture. Based on the results, it is thought that the lignin surrounding the cellulose was decomposed by laccase and lignin peroxidase secreted from U. thermosphaericus, resulting in cellulose and hemicellulose in the rice chaff being easily decomposed by enzymes from T. fusca.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Nicole J. Bale ◽  
Marton Palatinszky ◽  
W. Irene C. Rijpstra ◽  
Craig W. Herbold ◽  
Michael Wagner ◽  
...  

ABSTRACT “Candidatus Nitrosotenuis uzonensis” is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (crenʹ) were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and crenʹ increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota. As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the “Ca. Nitrosotenuis uzonensis” cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of “Ca. Nitrosotenuis uzonensis” demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high crenʹ content. IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. “Ca. Nitrosotenuis uzonensis” is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of “Ca. Nitrosotenuis uzonensis” cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota. This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.


2006 ◽  
Vol 72 (5) ◽  
pp. 3375-3382 ◽  
Author(s):  
Ebaid M. A. Ibrahim ◽  
Matthias Arensk�tter ◽  
Heinrich Luftmann ◽  
Alexander Steinb�chel

ABSTRACT The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50�C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.


Sign in / Sign up

Export Citation Format

Share Document