scholarly journals Machine learning study of DNA binding by transcription factors from the LacI family

2011 ◽  
Vol 45 (4) ◽  
pp. 667-679 ◽  
Author(s):  
G. G. Fedonin ◽  
A. B. Rakhmaninova ◽  
Yu. D. Korostelev ◽  
O. N. Laikova ◽  
M. S. Gelfand
2021 ◽  
Vol 713 ◽  
pp. 109060
Author(s):  
Neetu Neetu ◽  
Madhusudhanarao Katiki ◽  
Jai Krishna Mahto ◽  
Monica Sharma ◽  
Anoop Narayanan ◽  
...  

2018 ◽  
Author(s):  
Gregory J. Fonseca ◽  
Jenhan Tao ◽  
Emma M. Westin ◽  
Sascha H. Duttke ◽  
Nathanael J. Spann ◽  
...  

ABSTRACTMechanisms by which members of the AP-1 family of transcription factors play both redundant and non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, we investigated the molecular functions and genome-wide DNA binding patterns of AP-1 family members in macrophages. ChIP-sequencing showed overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yielded dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions were confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Janik Sielemann ◽  
Donat Wulf ◽  
Romy Schmidt ◽  
Andrea Bräutigam

AbstractUnderstanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested Arabidopsis thaliana transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence.


2012 ◽  
Vol 34 (8) ◽  
pp. 950-968
Author(s):  
Guang-Ming GU ◽  
Jin-Ke WANG

2021 ◽  
Vol 352 ◽  
pp. 109084
Author(s):  
Valeria Saccà ◽  
Alessia Sarica ◽  
Andrea Quattrone ◽  
Federico Rocca ◽  
Aldo Quattrone ◽  
...  

2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Ayana Ghosh ◽  
Filip Ronning ◽  
Serge M. Nakhmanson ◽  
Jian-Xin Zhu

Sign in / Sign up

Export Citation Format

Share Document