scholarly journals Constraining $$\boldsymbol{f(R,T)}$$ Gravity from the Dark Energy Density Parameter $$\boldsymbol{\Omega}_{\boldsymbol{\Lambda}}$$

2020 ◽  
Vol 26 (3) ◽  
pp. 281-284
Author(s):  
Snehasish Bhattacharjee ◽  
P. K. Sahoo
2007 ◽  
Vol 16 (10) ◽  
pp. 1633-1640 ◽  
Author(s):  
YONGLI PING ◽  
LIXIN XU ◽  
CHENGWU ZHANG ◽  
HONGYA LIU

We discuss the exact solutions of brane universes and the results indicate that the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterich's parametrization equation of state (EOS) of dark energy, we obtain that the new term varies with the redshift z. Finally, the evolutions of the mass density parameter Ω2, dark energy density parameter Ωx and deceleration parameter q2 are studied.


2000 ◽  
Vol 15 (16) ◽  
pp. 1023-1029 ◽  
Author(s):  
ZONG-HONG ZHU

By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm, the dark energy density parameter Ωm and its equation of state ωx = px/ρx. It is shown that, the larger the dark energy density and the more negative its pressure, the higher is the gravitational lensing probability. This fact can provide an independent constraint for dark energy.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750051 ◽  
Author(s):  
E. H. Baffou ◽  
M. J. S. Houndjo ◽  
I. G. Salako

In this paper, we study in Friedmann–Robertson–Walker universe the interaction between the viscous generalized Chaplygin gas with [Formula: see text] gravity, which is an arbitrary function of the Ricci scalar [Formula: see text] and the trace [Formula: see text] of the energy–momentum tensor. Assuming that the contents of universe are dominated by a generalized Chaplygin gas and dark energy, we obtained the modified Friedmann equations and also the time-dependent energy density and pressure of dark energy due to the shear and bulk viscosities for three interacting models depending on an input parameter [Formula: see text]. Within the simple form of scale factor (power-law), we discuss the graphical representation of dark energy density parameter and investigate the shear and bulk viscosities effects on the accelerating expansion of the universe for each interacting model.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Asmaa G. Shalaby ◽  
Vasilis K. Oikonomou ◽  
Gamal G. L. Nashed

Using f(T) gravitational theory, we construct modified cosmological models via the first law of thermodynamics by using the non-extensive thermodynamics framework, the effects of which are captured by the parameter δ. The resulting cosmological equations are modified compared to the standard Einstein-Hilbert ones, with the modifications coming from the f(T) gravitational theory and from the non-extensive parameter which quantifies the non-extensive thermodynamics effects quantified by the parameter δ, which when is set equal to unity, one recovers the field equations of f(T) gravity. We study in detail the cosmological evolution of the model in the presence of collisionless non-relativistic matter case, and we derive the exact forms of the dark energy density parameter and of the dark energy equation of state parameter, from which we impose constraints on the non-extensive thermodynamics parameter, δ, by using the Planck 2018 data on cosmological parameters. Accordingly, we repeat our calculations after including the relativistic matter along with the non-relativistic one, and we derive the new forms of the dark energy density parameter and of the dark energy equation of state parameter. Our study shows that the inclusion of non-extensive thermodynamic effects, quantified by the parameter δ, for a flat Friedmann-Robertson-Walker Universe, has measurable differences compared with the normal thermodynamics case. We confront our results with Type Ia supernovae observations for z≥0.4 and we obtain reasonably agreement with the observational data.


2007 ◽  
Vol 16 (10) ◽  
pp. 1581-1591 ◽  
Author(s):  
VINOD B. JOHRI ◽  
P. K. RATH

A comparative study of various parametrizations of the dark energy equation of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down to test the physical viability and cosmological compatibility of these parametrizations. A critical evaluation of the four-index parametrizations reveals that Hannestad–Mörtsell as well as Lee parametrizations are simple and transparent in probing the evolution of the dark energy during the expansion history of the universe and they satisfy the LSS, CMB and BBN constraints on the dark energy density parameter.


2015 ◽  
Vol 93 (8) ◽  
pp. 855-861
Author(s):  
Kayoomars Karami

Within the framework of Einstein gravity, we establish a correspondence between the Chaplygin scalar field model and the modified ghost dark energy model. We consider a spatially non-flat Friedmann–Robertson–Walker universe containing modified ghost dark energy and dark matter that are in interaction with each other. We solve the differential equation governing the dimensionless modified ghost dark energy density parameter numerically. Then we obtain the evolutionary behaviors of both the energy density and equation of state parameters of the modified ghost dark energy. More interesting is that the equation of state parameter at the present time can cross the phantom divide line provided the interaction parameter b2 > 0.15 is compatible with the observations. Furthermore, we reconstruct both the Chaplygin gas scalar field and potential according to the evolutionary behavior of the modified ghost dark energy model.


2005 ◽  
Vol 22 (4) ◽  
pp. 816-819 ◽  
Author(s):  
Wen Hai-Bao ◽  
Huang Xin-Bing

2010 ◽  
Vol 43 (4) ◽  
pp. 1083-1093 ◽  
Author(s):  
Philippe Jetzer ◽  
Denis Puy ◽  
Monique Signore ◽  
Crescenzo Tortora

2021 ◽  
pp. 2150090
Author(s):  
E. E. Kangal ◽  
M. Salti ◽  
O. Aydogdu

Making use of the generalized form of the Ghost dark energy density, which has the functional form [Formula: see text] where [Formula: see text] represents the Hubble expanding rate, the present accelerated enlargement behavior of the cosmos is investigated from the Rastall theory perspective. After finding a relation for the Hubble cosmic expansion rate, we consider recent cosmology-independent measurements calculated for the expansion history of the cosmos to fit the model via the [Formula: see text]-analysis. Moreover, we discuss the cosmographic properties of the model with the help of some cosmological quantities. We show that our model is stable and consistent with the recent astrophysical data. Also, for our model, we investigate cosmological interpretations of thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document