Mechanical Properties and Thermal Stability of Kaolinite/Emulsion Polymerization Styrene Butadiene Rubber Composite Prepared by Latex Blending Method

2020 ◽  
Vol 62 (4) ◽  
pp. 407-421
Author(s):  
Yinmin Zhang ◽  
Ao Zhang ◽  
Langlang Kang ◽  
Yongfeng Zhang

2016 ◽  
Vol 124-125 ◽  
pp. 167-174 ◽  
Author(s):  
Yinmin Zhang ◽  
Qinfu Liu ◽  
Shilong Zhang ◽  
Yude Zhang ◽  
Yongfeng Zhang ◽  
...  


2013 ◽  
Vol 115 (2) ◽  
pp. 1013-1020 ◽  
Author(s):  
Yude Zhang ◽  
Qian Zhang ◽  
Qinfu Liu ◽  
Hongfei Cheng ◽  
Ray L. Frost


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1388
Author(s):  
Kenan Zhang ◽  
Hao Zhang ◽  
Linsong Liu ◽  
Yongjie Yang ◽  
Lihui Liu ◽  
...  

The aim of this work was to investigate the dispersibility of kaolinite-rich coal gangue in rubber matrix, the mechanical properties and thermal stability of coal gangue/styrene butadiene rubber (SBR) composites, and to compare these properties to those of the same coal gangue but had undergone thermal activation and modification. Several experimental techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC), laser-scattering particle analyzer were adopted to characterize the coal gangue particles and then the obtained composites. The results demonstrated the raw coal gangue (RCG) was mainly composed of kaolinite. Calcination led to amorphization of thermal activated coal gangue (ACG), increased hydrophilicity and void volume, and decreased pH. The grain size of ACG became coarser than RCG, but ACG turned loose confirmed by higher degree of refinement after grinding. Modification enhanced the hydrophobicity of the coal gangue and improved its dispersibility than fillers without modification. Calcined samples had better dispersibility than uncalcined fillers. Additionally, the coal gangue treated by calcinating, grinding and modifying (MGA) had the best dispersion in rubber matrix. Either calcination or modification could improve the mechanical properties and thermal stability of coal gangue filled rubber, while the performance of MGA reinforced SBR (MGA-SBR) was the best. The enhanced performance of the MGA-SBR was owed to better dispersion of particles as well as stronger interactions between particles and rubber macromolecules.



RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34330-34341 ◽  
Author(s):  
Changjie Yin ◽  
Qiuyu Zhang

The reinforcement of octamethylcyclotetrasiloxane (D4) grafted styrene butadiene rubber (SBR-g-D4) with in situ generated silica was performed using the sol–gel reaction of tetraethoxysilane (TEOS) in latex.



2012 ◽  
Author(s):  
M. R. Saeb ◽  
T. N. Chenari ◽  
O. Yazdan Parast ◽  
B. Jafari ◽  
H. Asadi ◽  
...  


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.



Sign in / Sign up

Export Citation Format

Share Document