High-Sensitivity Cavity Ring-Down Spectrometer for High-Resolution Spectroscopy of Atmospheric Gases in the 745–775-nm Region

2021 ◽  
Vol 34 (3) ◽  
pp. 274-277
Author(s):  
S. S. Vasilchenko ◽  
S. Kassi ◽  
A. A. Lugovskoi
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuichiro Ezoe ◽  
Takaya Ohashi ◽  
Kazuhisa Mitsuda

AbstractHigh spectral resolution with a resolving power, $$E/\Delta E \gtrsim 1000$$ E / Δ E ≳ 1000 at 6 keV, is now available in X-ray astronomy. X-ray observations are particularly effective for plasma studies since major atomic transitions appear as spectral features in the X-ray band. High-resolution spectroscopy enables us to probe a wide variety of astrophysical plasmas, which are not obtainable from ground experiments, regarding their temperature, density, magnetic field, gravity, and velocity. In this review, we describe what are the X-ray emitting plasmas in the Universe, along with basic plasma diagnostics, and depict historical development of the techniques used for the X-ray spectroscopy. We outline the X-ray microcalorimeter instrument, soft X-ray spectrometer (SXS), onboard the ASTRO-H satellite. Despite the short lifetime of the satellite in orbit for about a month, observations with the SXS have shown the remarkable power of high-resolution spectroscopy in X-ray astronomy. Observed spectrum of the hot plasma in the core region of the Perseus cluster showed He-like Fe K-line to be clearly resolved into resonance, forbidden and intercombination lines for the first time. The line width indicates that the turbulent pressure amounts to only 4% of the thermal pressure of the plasma. We also describe new findings and constraints obtained from the superb spectrum of the Perseus cluster, which all indicate a great potential of X-ray spectroscopy. The recovery of the spectroscopy science of ASTRO-H is aimed at with XRISM, a Japanese mission planned for launch in early 2020s. In further future, Athena will expand the rich science with its high sensitivity and spectral resolution in early 2030s.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Sign in / Sign up

Export Citation Format

Share Document