Estimating the Contributions of the Atlantic Multidecadal Oscillation and Variations in the Atmospheric Concentration of Greenhouse Gases to Surface Air Temperature Trends from Observations

2018 ◽  
Vol 480 (1) ◽  
pp. 602-606 ◽  
Author(s):  
I. I. Mokhov ◽  
D. A. Smirnov
2021 ◽  
Vol 56 (1-2) ◽  
pp. 635-650 ◽  
Author(s):  
Qingxiang Li ◽  
Wenbin Sun ◽  
Xiang Yun ◽  
Boyin Huang ◽  
Wenjie Dong ◽  
...  

2019 ◽  
Vol 54 (3-4) ◽  
pp. 1295-1313
Author(s):  
Yidan Xu ◽  
Jianping Li ◽  
Cheng Sun ◽  
Xiaopei Lin ◽  
Hailong Liu ◽  
...  

AbstractThe global mean surface air temperature (GMST) shows multidecadal variability over the period of 1910–2013, with an increasing trend. This study quantifies the contribution of hemispheric surface air temperature (SAT) variations and individual ocean sea surface temperature (SST) changes to the GMST multidecadal variability for 1910–2013. At the hemispheric scale, both the Goddard Institute for Space Studies (GISS) observations and the Community Earth System Model (CESM) Community Atmosphere Model 5.3 (CAM5.3) simulation indicate that the Northern Hemisphere (NH) favors the GMST multidecadal trend during periods of accelerated warming (1910–1945, 1975–1998) and cooling (1940–1975, 2001–2013), whereas the Southern Hemisphere (SH) slows the intensity of both warming and cooling processes. The contribution of the NH SAT variation to the GMST multidecadal trend is higher than that of the SH. We conduct six experiments with different ocean SST forcing, and find that all the oceans make positive contributions to the GMST multidecadal trend during rapid warming periods. However, only the Indian, North Atlantic, and western Pacific oceans make positive contributions to the GMST multidecadal trend between 1940 and 1975, whereas only the tropical Pacific and the North Pacific SSTs contribute to the GMST multidecadal trend between 2001 and 2013. The North Atlantic and western Pacific oceans have important impacts on modulating the GMST multidecadal trend across the entire 20th century. Each ocean makes different contributions to the SAT multidecadal trend of different continents during different periods.


2020 ◽  
Vol 26 (5) ◽  
pp. 200378-0
Author(s):  
Boonlue Kachenchart ◽  
Chaiyanan Kamlangkla ◽  
Nattapong Puttanapong ◽  
Atsamon Limsakul

Continued urban expansion undergone in the last decades has converted many weather stations in Thailand into suburban and urban setting. Based on homogenized data during 1970-2019, therefore, this study examines urbanization effects on mean surface air temperature (Tmean) trends in Thailand. Analysis shows that urban-type stations register the strongest warming trends while rural-type stations exhibit the smallest trends. Across Thailand, annual urban-warming contribution exhibits a wide range (< 5% to 77%), probably manifesting the Urban Heat Island (UHI) differences from city to city resulting from the varied urban characteristics and climatic background. Country-wide average urban warming contribution shows a significant increasing trend of 0.15 <sup>o</sup>C per decade, accounting for 40.5% of the overall warming. This evidence indicates that urban expansion has great influence on surface warming, and the urban-warming bias contributes large fraction of rising temperature trends in Thailand. The increasing trend of annual Tmean for Thailand as a whole after adjusting urban-warming bias is brought down to the same rate as the annual global mean temperature trend, reflecting a national baseline signal driven by large-scale anthropogenic-induced climate change. Our results provide a scientific reference for policy makers and urban planners to mitigate substantial fraction of the UHI warming.


2018 ◽  
Vol 131 (4) ◽  
pp. 1005-1018 ◽  
Author(s):  
Palash Sinha ◽  
M. M. Nageswararao ◽  
Guru Prasad Dash ◽  
Archana Nair ◽  
U. C. Mohanty

Sign in / Sign up

Export Citation Format

Share Document