scholarly journals Implications of changes in the atmospheric circulation on the detection of regional surface air temperature trends

2007 ◽  
Vol 34 (8) ◽  
Author(s):  
Qigang Wu ◽  
David J. Karoly
2021 ◽  
Author(s):  
Jouni Räisänen

AbstractThe effect of atmospheric circulation on monthly, seasonal and annual mean surface air temperature trends in the years 1979–2018 is studied by applying a trajectory-based method on the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis data. To the extent that the method captures the effects of atmospheric circulation, the results suggest that circulation trends only had a minor impact on observed annual mean temperature trends in most areas. Exceptions include, for example, a decrease in annual mean warming by about 1 °C in western Siberia, and increased warming in central Europe and the Arctic Ocean. However, the effect of circulation trends on seasonal and particularly monthly temperature trends is more substantial. Subtracting the effect of circulation changes from the ERA5 temperature trends leaves residual trends with a smoother annual cycle than the original trends. The residual monthly mean temperature trends also tend to agree better with the multi-model mean temperature trends from models in the 5th Coupled Model Intercomparison Project (CMIP5) than the original ERA5 trends do, with a 42% decrease in the mean square difference over the global land area. However, the corresponding decrease in the mean square difference of the annual mean temperature trends is only 6%.


2021 ◽  
Vol 56 (1-2) ◽  
pp. 635-650 ◽  
Author(s):  
Qingxiang Li ◽  
Wenbin Sun ◽  
Xiang Yun ◽  
Boyin Huang ◽  
Wenjie Dong ◽  
...  

2019 ◽  
Vol 54 (3-4) ◽  
pp. 1295-1313
Author(s):  
Yidan Xu ◽  
Jianping Li ◽  
Cheng Sun ◽  
Xiaopei Lin ◽  
Hailong Liu ◽  
...  

AbstractThe global mean surface air temperature (GMST) shows multidecadal variability over the period of 1910–2013, with an increasing trend. This study quantifies the contribution of hemispheric surface air temperature (SAT) variations and individual ocean sea surface temperature (SST) changes to the GMST multidecadal variability for 1910–2013. At the hemispheric scale, both the Goddard Institute for Space Studies (GISS) observations and the Community Earth System Model (CESM) Community Atmosphere Model 5.3 (CAM5.3) simulation indicate that the Northern Hemisphere (NH) favors the GMST multidecadal trend during periods of accelerated warming (1910–1945, 1975–1998) and cooling (1940–1975, 2001–2013), whereas the Southern Hemisphere (SH) slows the intensity of both warming and cooling processes. The contribution of the NH SAT variation to the GMST multidecadal trend is higher than that of the SH. We conduct six experiments with different ocean SST forcing, and find that all the oceans make positive contributions to the GMST multidecadal trend during rapid warming periods. However, only the Indian, North Atlantic, and western Pacific oceans make positive contributions to the GMST multidecadal trend between 1940 and 1975, whereas only the tropical Pacific and the North Pacific SSTs contribute to the GMST multidecadal trend between 2001 and 2013. The North Atlantic and western Pacific oceans have important impacts on modulating the GMST multidecadal trend across the entire 20th century. Each ocean makes different contributions to the SAT multidecadal trend of different continents during different periods.


2011 ◽  
Vol 32 (3) ◽  
pp. 737-750 ◽  
Author(s):  
P. T. Nastos ◽  
C. M. Philandras ◽  
D. Founda ◽  
C. S. Zerefos

2020 ◽  
Vol 26 (5) ◽  
pp. 200378-0
Author(s):  
Boonlue Kachenchart ◽  
Chaiyanan Kamlangkla ◽  
Nattapong Puttanapong ◽  
Atsamon Limsakul

Continued urban expansion undergone in the last decades has converted many weather stations in Thailand into suburban and urban setting. Based on homogenized data during 1970-2019, therefore, this study examines urbanization effects on mean surface air temperature (Tmean) trends in Thailand. Analysis shows that urban-type stations register the strongest warming trends while rural-type stations exhibit the smallest trends. Across Thailand, annual urban-warming contribution exhibits a wide range (< 5% to 77%), probably manifesting the Urban Heat Island (UHI) differences from city to city resulting from the varied urban characteristics and climatic background. Country-wide average urban warming contribution shows a significant increasing trend of 0.15 <sup>o</sup>C per decade, accounting for 40.5% of the overall warming. This evidence indicates that urban expansion has great influence on surface warming, and the urban-warming bias contributes large fraction of rising temperature trends in Thailand. The increasing trend of annual Tmean for Thailand as a whole after adjusting urban-warming bias is brought down to the same rate as the annual global mean temperature trend, reflecting a national baseline signal driven by large-scale anthropogenic-induced climate change. Our results provide a scientific reference for policy makers and urban planners to mitigate substantial fraction of the UHI warming.


2018 ◽  
Vol 131 (4) ◽  
pp. 1005-1018 ◽  
Author(s):  
Palash Sinha ◽  
M. M. Nageswararao ◽  
Guru Prasad Dash ◽  
Archana Nair ◽  
U. C. Mohanty

Sign in / Sign up

Export Citation Format

Share Document