Effect of Hormonal Background on the Expression of Sex Hormone Receptors and the Migration Potential of Mouse Endometrial Epithelial and Stromal Cells In Vitro

2021 ◽  
Vol 52 (6) ◽  
pp. 401-413
Author(s):  
L. Sh. Izmailova ◽  
A. O. Gaidamaka ◽  
O. O. Serbina ◽  
E. A. Vorotelyak
2022 ◽  
Vol 23 (2) ◽  
pp. 916
Author(s):  
Paulina Escandon ◽  
Sarah E. Nicholas ◽  
Rebecca L. Cunningham ◽  
David A. Murphy ◽  
Kamran M. Riaz ◽  
...  

Keratoconus (KC) is a progressive corneal thinning disease that manifests in puberty and worsens during pregnancy. KC onset and progression are attributed to diverse factors that include: environmental, genetics, and hormonal imbalances; however, the pathobiology remains elusive. This study aims to determine the role of corneal stroma sex hormone receptors in KC and their interplay with estrone (E1) and estriol (E3) using our established 3D in vitro model. Healthy cornea stromal cells (HCFs) and KC cornea stromal cells (HKCs), both male and female, were stimulated with various concentrations of E1 and E3. Significant changes were observed between cell types, as well as between males and females in the sex hormone receptors tested; androgen receptor (AR), progesterone receptor (PR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) using Western blot analysis. E1 and E3 stimulations in HCF females showed AR, PR, and ERβ were significantly upregulated compared to HCF males. In contrast, ERα and ERβ had significantly higher expression in HKC’s females than HKC’s males. Our data suggest that the human cornea is a sex-dependent, hormone-responsive tissue that is significantly influenced by E1 and E3. Therefore, it is plausible that E1, E3, and sex hormone receptors are involved in the KC pathobiology, warranting further investigation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1588-1588
Author(s):  
Malwina Suszynska ◽  
Pranesh Gunjal ◽  
Agata Poniewierska-Baran ◽  
Sylwia Borkowska ◽  
Kasia Mierzejewska ◽  
...  

Abstract Background: Mesenchymal stromal cells (MSCs) play an important role in bone marrow (BM) by providing a supportive microenvironment for hematopoietic stem/progenitor cells (HSPCs). MSCs are also employed in organ regeneration as a rich source of several paracrine signals that inhibit apoptosis and promote angiogenesis in damaged tissues. As reported in the literature, several mediators, including a growth factor (HGF), a chemokine (SDF-1), bioactive lipids (S1P, C1P), and extracellular nucleotides (ATP, UTP), affect MSC biology and migration. In parallel, evidence has accumulated that the most primitive mesodermal precursors of MSCs (small BM-residing and peripheral blood (PB)-circulating Sca-1+Lin–CD45– cells in mice and CD133+Lin–CD45– cells in humans) express certain embryonic stem cell markers, such as the transcription factor Oct-4 and the SSEA-1/4 antigens (Stem Cells Dev. 2014;23:689-701), and also express several genes characteristic of migrating primordial germ cells (Leukemia 2010; 24:1450–1461). Hypothesis: Pursuing observations that most primitive human and murine precursors of MSCs express several germline markers, we became interested in whether murine and human MSCs also express gonadotropic hormone receptors, such as receptors for follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), and whether these receptors are functional. Materials and Methods: Murine and human MSCs were expanded from a population of adherent murine BM or human umbilical cord blood cells, and cells with low passage numbers were employed for analysis. The expression of gonadotropic receptors (FSH-R, LH-R, and PRL-R) was evaluated by RT-PCR, and the functionality of these receptors was tested in assays for proliferation, chemotaxis, adhesion, and phosphorylation of MAPKp42/44 and AKT. In addition, we also evaluated the expression of gonadotropin receptors by purified murine SKL cells and human CD34+ cells. Results. We report here for the first time that both human and murine MSCs and HSPCs express functional gonadotropin receptors. We found that FSH strongly enhanced proliferation of MSCs in vitro as well as expanded the number of these cells in murine BM after prolonged administration in vivo. We found that all these hormones stimulated chemotaxis and adhesion of murine and human MSCs. These functional responses were correlated with phosphorylation of MAPKp42/44 and AKT. At the same time, we observed that pituitary gonadotropin receptors are expressed by murine and human HSPCs and that these hormones stimulate proliferation and expansion of these cells in vivo in BM as well as in clonogeneic assays in vitro if added along with suboptimal doses of colony-stimulating growth factors. Of note, we did not observe significant differences in the effects of FSH, LH, and PRL between male and female cells. Conclusions. We provide for the first time evidence for the existence of a functional pituitary gonadotropin–hematopoiesis signaling axis, which has important implications for hematopoiesis in young individuals, and we will present gene-array data on changes in gene expression in MSCs after stimulation with gonadotropins. Moreover, since the levels of FSH and LH increase in response to a decrease in gonadal function with advanced age, elevated levels of FSH and LH may affect hematopoiesis and may be factors contributing to the development of leukemia. The stimulatory effect of pituitary gonadotropins on MSCs and HSPCs could also be exploited in the clinic in selected cases as a means to enhance hematopoiesis. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Miki Ohara ◽  
Hiromi Yoshida-Komiya ◽  
Miho Ono-Okutsu ◽  
Akiko Yamaguchi-Ito ◽  
Toshifumi Takahashi ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) causes anovulation and is associated with a reduced clinical pregnancy rate. Metformin, which is widely used for treating PCOS, can lead to successful pregnancy by restoring the ovulation cycle and possibly improving endometrial abnormality during the implantation period. However, the mechanism by which metformin improves endometrial abnormality remains unknown. Women with PCOS have an aberrant expression of steroid hormone receptors and homeobox A10 (HOXA10), which is essential for embryo implantation in the endometrium. Methods In this study, we examined whether metformin affects androgen receptor (AR) and HOXA10 expression in PCOS endometrium in vivo and in human endometrial cell lines in vitro. Expression of AR and HOXA10 was evaluated by immunohistochemistry, fluorescent immunocytochemistry, and western blot analysis. Results AR expression was localized in both epithelial and stromal cells; however, HOXA10 expression was limited to only stromal cells in this study. In women with PCOS, 3 months after metformin treatment, the expression of AR was reduced in epithelial and stromal cells in comparison to their levels before treatment. In contrast, HOXA10 expression in the stromal cells with metformin treatment increased in comparison to its level before treatment. Further, we showed that metformin counteracted the testosterone-induced AR expression in both Ishikawa cells and human endometrial stromal cells (HESCs); whereas, metformin partly restored the testosterone-reduced HOXA10 expression in HESCs in vitro. Conclusions Our results suggest that metformin may have a direct effect on the abnormal endometrial environment of androgen excess in women with PCOS. Trial registration The study was approved by the Ethical Committee of Fukushima Medical University (approval no. 504, approval date. July 6, 2006), and written informed consent was obtained from all patients. https://www.fmu.ac.jp/univ/sangaku/rinri.html


2021 ◽  
Vol 11 (17) ◽  
pp. 8101
Author(s):  
Alina Stanomir ◽  
Carmen Mihaela Mihu ◽  
Simona Rednic ◽  
Cristina Pamfil ◽  
Alexandra Roman ◽  
...  

Introduction. As oral mesenchymal stromal cells (MSCs) have not, to date, been isolated from systemic sclerosis (SSc) patients, the aim of this in vitro experiment was to characterize gingival MSCs (SScgMSCs) and granulation tissue MSCs (SScgtMSCs) from SSc and to evaluate their functionality in comparison to healthy MSCs (hMSCs), in normal or hyaluronic acid (HA) culture media. Materials and Methods. Isolated cells were described by immunophenotyping of surface antigen make-up and by trilineage mesenchymal differentiation capacity. Colony-Forming Unit-Fibroblast (CFU-F) test and migration potential evaluated MSC functionality. Results. All types of MSCs displayed positivity for the following surface markers: CD29, CD73, CD90, CD105, CD44, and CD79a. These cells did not express CD34, CD45, HL-DR, and CD14. Isolated MSCs differentiated into osteoblasts, adipocytes, and chondroblasts. The frequency of CFU-F for SScgtMSCs was significantly lower than that of hMSCs (p = 0.05) and SScgMSCs (p = 0.004) in normal medium, and also markedly lower than that of SScgMSCs (p = 0.09) in HA medium. Following HA exposure, both SScgMSCs and SScgtMSCs migrated significantly less (p = 0.033 and p = 0.005, respectively) than hMSCs. Conclusions. A reduced functionality of MSCs derived from SSc as compared to hMSCs was observed. HA in culture medium appeared to significantly stimulate the migration potential of hMSCs.


1960 ◽  
Vol XXXIII (II) ◽  
pp. 261-276 ◽  
Author(s):  
G. Hellweg ◽  
J. Ferin ◽  
K. G. Ober

ABSTRACT 65 endometrial biopsies from castrated women who had received either natural or artificial sex hormone therapy were studied microscopically. Attention was paid to various histologic criteria, especially to the number of endometrial granulocytes (»K« cells, KZ). The following was obtained: The »K« cells are completely absent when no hormone substitution therapy is given. They were also lacking when the castrated patients were treated only with oestrogens, even if the dose given was ten-times that found in women during the reproductive ages. In contrast, the »K« cells developed from the endometrial stromal cells only under influence of progesterone, usually appearing first 8–10 days after the administration of the gestagen. The »K« cells were demonstrable in the number corresponding to a normal secretory phase only then, when the oestrogen-progesterone dosage ratio had induced a fully-developed secretory change, as measured by the usual histologic criteria. With an overdosage of oestrogen the »K« cells were either absent or were very sparse. Contrarily, an overdosage of progesterone had no influence on their number. The development of endometrial glands does not always entirely parallel that of the stroma in castrated patients following hormone therapy. A more exact indicator for the proper dose for the production of a secretory phase by hormone therapy seems to be the number of »K« cells in the endometrial stroma.


Sign in / Sign up

Export Citation Format

Share Document