Noise immunity of a 28-nm two-phase CMOS combinational logic to transient effects of single nuclear particles

2015 ◽  
Vol 44 (4) ◽  
pp. 255-262 ◽  
Author(s):  
Yu. V. Katunin ◽  
V. Ya. Stenin
Author(s):  
G. V. Kulikov ◽  
Trung Tien Do ◽  
E. V. Samokhina

Objectives. The widespread use of radio data transmission systems using signals with multiposition phase shift keying (MPSK) is due to their high noise immunity and the simplicity of constructing the transmitting and receiving parts of the equipment. The conducted studies have shown that the presence of non-fluctuation interference, in particular, harmonic interference, in the radio channel significantly reduces the noise immunity of receiving discrete information. The energy loss in this case, depending on the interference intensity, can range from fractions of dB to 10 db or more. Therefore, interference suppression is an important task for such radio systems. The aim of the work is to synthesize and analyze an algorithm for optimal nonlinear filtering of MPSK signals against a background of harmonic interference with a random initial phase.Methods. The provisions of the theory of optimal nonlinear signal filtering and methods of statistical radio engineering are used.Results. The synthesis and analysis of the algorithm of optimal nonlinear filtering of MPSK signals against the background of harmonic interference with a random initial phase are carried out. The synthesized receiver contains a discrete symbol evaluation unit, two phase-locked frequency circuits of reference generators that form evaluation copies of the signal and interference, and cross-links between them. Analytical expressions are obtained that allow calculating the dependences of the bit error probability on the signal-to-noise ratio and the interference intensity µ. It is established that uncompensated fluctuations of the initial phase of the useful signal have a greater effect on the receiver noise immunity than similar fluctuations of the phase of harmonic interference, especially with low positional signals.Conclusions. Comparison of the obtained results with the results obtained in the case when there are no harmonic interference compensation circuits shows that the use of the obtained phase filtering algorithms allows for almost complete suppression of harmonic interference. Thus, if µ = 0.5 and the probability of error is 10−2, the energy gain at M = 2 is about 2.5 dB, at M = 4 – about 6 dB, at M = 8 and M = 16 – at least 10 dB.


2019 ◽  
Vol 54 (7) ◽  
pp. 2091-2101
Author(s):  
Zhao Chuan Lee ◽  
M. Sultan M. Siddiqui ◽  
Zhi-Hui Kong ◽  
Tony Tae-Hyoung Kim

Author(s):  
Benjamin L. Pence ◽  
Jixin Chen

This paper develops a framework for along-the-channel and through-the-membrane control oriented modeling of polymer electrolyte membrane (PEM) fuel cells. The initial modeling framework is spatially one-dimensional by one-dimensional (1+1D) and is described by unsteady partial differential equations (PDEs). Numerical techniques convert the PDEs and boundary conditions to ordinary differential and algebraic equations that are convenient for state-space modeling. The modeling framework includes two-phase, thermal, and other transient effects. The generality of the modeling framework and its ability to be represented in state-space form facilitate complexity reduction and control-oriented application.


2015 ◽  
Vol 44 (4) ◽  
pp. 263-268
Author(s):  
Yu. V. Katunin ◽  
K. E. Levin

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-93
Author(s):  
Guanxi Yan ◽  
Zi Li ◽  
Sergio Andres Galindo Torres ◽  
Alexander Scheuermann ◽  
Ling Li

This work reviews the transient two-phase flow in porous media with engineering applications in Geotechnics. It initially overviews constitutive relationships, conventional theories, and experiments. Then, corresponding limitations are discussed according to conflicting observations and multiphase interfacial dynamics. Based on those findings, the dynamic nonequilibrium effects were so defined, which could also be abbreviated as dynamic/transient effects. Four advanced theories have already been developed to resolve these effects. This review collects them and discusses their pros and cons. In addition, this work further reviews the state-of-art in terms of experimental methods, influential factors in dynamic/transient effects, and modelling performance, as well as micromodel and numerical methods at pore-scale. Last, the corresponding geotechnical applications are reviewed, discussing their applicability in effective stress, shear strength, and deformation. Finally, the entire review is briefed to identify research gaps in Geotechnics.


Author(s):  
Budi Chandra ◽  
Kathy Simmons

Aeroengine bearing chambers typically contain bearings, seals, shafts and static parts. Oil is introduced for lubrication and cooling and this creates a two phase flow environment that may contain droplets, mist, film, ligaments, froth or foam and liquid pools. Efficient and effective liquid removal from a bearing chamber is a functional requirement and in recent years the University of Nottingham Technology Centre in Gas Turbine Transmission Systems has been conducting an experimental and computational research program one strand of which is investigating bearing chamber off-take flows. Initial investigations focussed on a chamber where there was a relatively deep pocket for oil collection below the chamber [1, 2]. In more recent studies Chandra et al have investigated a shallower geometry [3]. In both sets of studies, chamber residence volume and wall film thickness data have been obtained for a range of shaft speeds, scavenge ratios and liquid supply rates. Two methods of introducing liquid to the chamber have been used: a film generator that puts liquid directly onto the chamber wall and a droplet inlet system that distributes droplets from the rotating shaft. During some of the previous investigations, visual data relating to the two phase flow in the outlet pipe immediately below the chamber was gathered together with data from pressure transducers one located in this pipe and one on the chamber itself. It has been observed that for some parameter combinations the chamber flow is gravity dominated whereas for others (typically at higher shaft speeds) the flow is shear dominated. During transition between regimes a pressure spike on the pipe pressure transducer is observed and this may be linked to a change in two phase flow regime within the outlet pipe. A study by Baker et al [4] on transient effects in gas-liquid separation has shown pressure spikes during transitions to new equilibrium conditions for two-phase pipe flow where the gas flow rate is suddenly increased. In this paper outlet visualisation, chamber visualisation and pressure data are combined and conclusions are drawn relating to the parameters controlling whether shear or gravity dominate. The effect of the chamber flow regime on the outlet flow regime is assessed and presented. An implication of the analysis is that during transitional conditions a bearing chamber may contain a different quantity of liquid than in steady state conditions.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document