Cosmology beyond the standard model: Multi-component dark matter model

2015 ◽  
Vol 59 (6) ◽  
pp. 491-493 ◽  
Author(s):  
M. Demiański ◽  
A. G. Doroshkevich
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Chih-Ting Lu ◽  
Raymundo Ramos ◽  
Yue-Lin Sming Tsai

Abstract Recently, we have witnessed two hints of physics beyond the standard model: a 3.3σ local excess ($$ {M}_{A_0} $$ M A 0 = 52 GeV) in the search for H0 → A0A0 → b$$ \overline{b} $$ b ¯ μ+μ− and a 4.2σ deviation from the SM prediction in the (g − 2)μ measurement. The first excess was found by the ATLAS collaboration using 139 fb−1 data at $$ \sqrt{s} $$ s = 13 TeV. The second deviation is a combination of the results from the Brookhaven E821 and the recently reported Fermilab E989 experiment. We attempt to explain these deviations in terms of a renormalizable simplified dark matter model. Inspired by the null signal result from dark matter (DM) direct detection, we interpret the possible new particle, A0, as a pseudoscalar mediator connecting DM and the standard model. On the other hand, a new vector-like muon lepton can explain these two excesses at the same time while contributing to the DM phenomenology.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maximilian Ruhdorfer ◽  
Ennio Salvioni ◽  
Andreas Weiler

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production through an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Energy versions of the LHC, and FCC-hh. Implications on the parameter space of pNGB Dark Matter are discussed. In addition, we give improved and extended results for the collider reach on the marginal Higgs portal, under the assumption that the new scalars escape the detector, as motivated by a variety of beyond the Standard Model scenarios.


2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 587 ◽  
Author(s):  
Vitaly Beylin ◽  
Maxim Yu. Khlopov ◽  
Vladimir Kuksa ◽  
Nikolay Volchanskiy

The problems of simple elementary weakly interacting massive particles (WIMPs) appeal to extend the physical basis for nonbaryonic dark matter. Such extension involves more sophisticated dark matter candidates from physics beyond the Standard Model (BSM) of elementary particles. We discuss several models of dark matter, predicting new colored, hyper-colored or techni-colored particles and their accelerator and non-accelerator probes. The nontrivial properties of the proposed dark matter candidates can shed new light on the dark matter physics. They provide interesting solutions for the puzzles of direct and indirect dark matter search.


LEP data constrain severely many proposed extensions of the Standard Model. These include: massive neutrinos, which are now largely excluded as candidates for the dark matter of the Universe; supersymmetric particles, the lightest of which would still constitute detectable dark matter; technicolour, of which many favoured versions are now excluded by precision electroweak measurements; and grand unified theories, of which LEP data favour supersymmetric versions.


2018 ◽  
Vol 33 (02) ◽  
pp. 1830003 ◽  
Author(s):  
John Ellis

The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.


Author(s):  
Junji Hisano

It is now certain that dark matter exists in the Universe. However, we do not know its nature, nor are there dark matter candidates in the standard model of particle physics or astronomy However, weakly interacting massive particles (WIMPs) in models beyond the standard model are one of the leading candidates available to provide explanation. The dark matter direct detection experiments, in which the nuclei recoiled by WIMPs are sought, are one of the methods to elucidate the nature of dark matter. This chapter introduces an effective field theory (EFT) approach in order to evaluate the nucleon–WIMP elastic scattering cross section.


2014 ◽  
Vol 29 (37) ◽  
pp. 1402001 ◽  
Author(s):  
Maxim Yu. Khlopov

The nature of cosmological dark matter finds its explanation in physics beyond the Standard Model of elementary particles. The landscape of dark matter candidates contains a wide variety of species, either elusive or hardly detectable in direct experimental searches. Even in case, when such searches are possible the interpretation of their results implies additional sources of information, which provide indirect effects of dark matter. Some nontrivial probes for the nature of the dark matter are presented in the present issue.


Sign in / Sign up

Export Citation Format

Share Document