Kinetics of the Variation in the Magnetic Impurity Ion Concentration in Pb1–x–ySn x V y Te Alloys upon Doping

2018 ◽  
Vol 52 (7) ◽  
pp. 828-835
Author(s):  
E. P. Skipetrov ◽  
N. S. Konstantinov ◽  
L. A. Skipetrova ◽  
A. V. Knotko ◽  
V. E. Slynko
Author(s):  
David C. Cowell

An automated method is described, using standard continuous flow techniques, for the determination of urine fluoride ion concentration using a fluoride ion selective electrode. It is shown that the kinetics of the electrode response to changes in fluoride ion can be used for the accurate measurement of fluoride ion concentration in urine, and that equilibration of the electrode response is not a prerequisite for the measurement of fluoride ion. Recovery experiments are in the range 83 to 90%; in-batch precision is between 0·9 and 1·6% and carryover 2·5% or less.


Author(s):  
Ekaterina S. Guseva ◽  
Svetlana S. Popova

The effect of the magnitude of cathodic polarization and the temperature of a solution of lanthanum salicylate on the kinetics of the formation of elecrode LаyMn1-yO2 has been described. It has been established that two phases are formed on the electrode: the phase of the solid solution of the introduced lanthanum in MnO2 at potentials negative -2.5V turns into a new phase LаyMn1-yO2; last on the curve Eб/т-Ек the potential delay characteristic of the process of forming a new phase with an independent crystal lattice corresponds. Thus, to obtain a time-stable phase of the introduction of lanthanum into the structure of the electrode LаyMn1-yO2 the potential range from –2.9 V to –2.5 V can be recommended. The influence of the solution temperature on the kinetic characteristics of the process is ambiguous and is associated with a change in the degree of disorder in the structure of the forming phase at the boundary MnO2 electrode/solution (La3+), which hampers diffusion of ions La3+ into the electrode and leads to a decrease in ion concentration La3+, involved in the act of electrochemical introduction and, accordingly, to a decrease in the value of i (0). At temperatures above 10 °С the structure is stabilized and the characteristics (k, i (0)) increase. The composition of the formed phases is determined LixMnO2, LayMn1-yO2, LixLayMn1-yO2, current-free chronopotentiometry method calculated on the basis of equilibrium potentials Ep of these phases with pulsed galvanostatic polarization mode. Stability formed in the structure of MnO2 electrode chemical compounds of lanthanum was established. The activating effect of fullerene additives С60 composed of modified lanthanum LаyMn1-yO2 electrodes due to the high redox activity and the unusual structure of the molecules С60. Data on the effect of modified MnO2 electrodes on their potentials in an open circuit and during polarization in the working solution are in good agreement in terms of increasing the capacity of lithium with the results of cycling LiхMnO2, LiхLayMn1-yO2, LiхLayMn1-yO2-σ(C60)n in galvanostatic mode. The results of galvanostatic cycling showed that the discharge capacity of the electrodes increases in the series: LixMnO2 > LixLayMn1-yO2 > LiхLayMn1-yO2-σ(C60)n. With the help of cyclic chronovamperometry a good reversibility for LiхLayMn1-yO2-σ(C60)n electrode was established.


1975 ◽  
Vol 53 (24) ◽  
pp. 3697-3701 ◽  
Author(s):  
Milton Cornelius Weekes ◽  
Thomas Wilson Swaddle

The rate of hydrolysis of iodopentaaquochromium(III) ion has been measured as a function of pressure (0.1 to 250 MPa) and hydrogen ion concentration (0.1 to 1.0 mol kg−1) at 298.2 K and ionic strength 1.0 mol kg−1 (aqueous HClO4–LiClO4). The volumes of activation for the acid independent and inversely acid dependent hydrolysis pathways are −5.4 ± 0.5 and −1.6 ± 0.3 cm3 mol−1 respectively, and are not detectably pressure-dependent. Consideration of these values, together with the molar volume change of −3.3 ± 0.3 cm3 mol−1 determined dilatometrically for the completed hydrolysis reaction, indicates that the mechanisms of the two pathways are associative interchange (Ia) and dissociative conjugate base (Dcb) respectively.


1944 ◽  
Vol 80 (4) ◽  
pp. 333-339 ◽  
Author(s):  
Alan W. Bernheimer

The kinetics of the hemolytic reaction effected by the hemolysin of Clostridium septicum, strain 44, has been studied with regard to the effect of concentration, temperature, and hydrogen ion concentration on the rate of the hemolytic reaction. The kinetics of hemolysis was found to resemble in several respects that of enzyme-catalyzed reactions, but differed in the absence of a clearly defined pH optimum. Attention is drawn to differences between the hemolytic system studied and certain other hemolytic systems.


2021 ◽  
Vol 25 (7) ◽  
pp. 79-85
Author(s):  
A.G. Sudha ◽  
T.N. Ramesh

Addition of a chelating ligand (glutamate ion) to [Fe(SCN)]2+ solution leads to change in the colour. On increasing the glutamate ion concentration in iron thiocyanate complex solution, the colour of [Fe(SCN)]2+ disappears with the emergence of a new peak at lower wavelength due to the formation of [Fe(Glu)]2+complex. The conductance of [Fe(SCN)]2+ complex ion in solution is high while on addition of different concentrations of glutamate ion to iron thiocyanate complex, their conductance value decreases due to formation of [Fe(Glu)]2+. Photosensitivity studies of a series of solutions prepared by the addition of glutamate ion of varying concentrations to ferric chloride-ammonium thiocyanate/potassium thiocyanate solution in the short UV region demonstrate the better stability of [Fe(Glu)]2+compared to [Fe(SCN)]2+ and the rate kinetics of decomposition has been reported.


1978 ◽  
Vol 33 (6) ◽  
pp. 657-659 ◽  
Author(s):  
M. P. Singh ◽  
A. K. Singh ◽  
Mandhir Kumar

Abstract The present paper deals with the kinetics of oxidation of D-galactose by Nessler's reagent in alkaline medium. The reaction is zero order with respect to Hg(II) and first order with respect to reducing sugar. The direct proportionality of the reaction rate at low hydroxide ion concentrations shows retarding trend at higher concentrations. The reaction rate is inversely proportional to iodide ion concentration. A mechanism has been proposed taking HgI3- as the reacting species


Sign in / Sign up

Export Citation Format

Share Document