Quantum oscillations of the resistivity and hall coefficient and the quantum limit in Bi0.93Sb0.07 alloys in a magnetic field along the trigonal axis

2011 ◽  
Vol 53 (9) ◽  
pp. 1811-1821 ◽  
Author(s):  
N. A. Red’ko ◽  
V. D. Kagan ◽  
M. P. Volkov
2002 ◽  
Vol 16 (20n22) ◽  
pp. 3054-3057
Author(s):  
V. B. KRASOVITSKY

The special quantum oscillations of the kinetic coefficients in magnetic field ("high-temperature" oscillations - HTO) discovered by the author in 1974 have been considered. The oscillations are periodic in the reciprocal magnetic field and are characterized by a frequency higher then that of Shubnikov-de Haas (SdH) oscillations. The results of joint studies of SdH oscillations and HTO of the magnetoresistance for pure Bi and alloy BiSb in magnetic field up to 33 T are presented. The oscillations are measured for different magnetic field directions at temperature 4 – 30 K. It was found that SdH holes oscillations and holes HTO reached its quantum limit at the same value of magnetic field. The analysis of the experimental data verified one of two alternative models of HTO.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3355-3359
Author(s):  
I. MIHUT ◽  
C. C. AGOSTA ◽  
C. H. MIELKE ◽  
M. TOKOMOTO

The magnetic breakdown effect can be seen by the growth of new frequencies in the quantum oscillations in clean metals as a function of magnetic field. We have studied the variation of the amplitudes in the quantum oscillations in the resistance (the Shubnikov-de Haas effect) as a function of angle in the quasi-two dimensional-organic conductor κ-(BEDT-TTF)2Cu(NCS)2. The measurements were made by means of a radio frequency (rf) tank circuit (~ 50 MHz) at very high magnetic fields(50T-60T) and low temperature(500 mK). The geometry of the rf excitation we used excited in-plane currents, and therefore we measured the in-plane resistivity. In contrast to conventional transport measurements that measure the inter-plane resistivity, the in-plane resistivity is dominated by the magnetic breakdown frequencies. As a result we measured much higher breakdown frequency amplitudes than conventional transport experiments. As is expected, the angular dependence of the Shubnikov-de Haas frequencies have a 1/cosθ behavior. This is due to the change of the cross sectional area of the tubular Fermi surface as the angle with respect to the magnetic field is changed. The amplitude of the oscillations changes due to the spin splitting factor which takes into account the ratio between the spin splitting and the energy spacing of the Landau levels which also has 1/cosθ behavior. We show that our data agree with the semi-classical theory (Lifshitz-Kosevich formula).


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745015
Author(s):  
V. V. Kabanov

Energy spectrum of electrons (holes) doped into two-dimensional (2D) antiferromagnetic (AF) semiconductors is quantized in an external magnetic field of arbitrary direction. A peculiar dependence of de Haas–van Alphen (dHvA) magneto-oscillation amplitudes on the azimuthal in-plane angle from the magnetization direction and on the polar angle from the out-of-plane direction is found. The angular dependence of the amplitude is different if the measurements are performed in the field above and below of the spin-flop field.


General expressions are obtained for the Hall coefficient and transverse magneto-resistance effect in polar semi-conductors, and the variation of these effects with temperature, magnetic field strength and degeneracy of the electrons is discussed. At low temperatures the magneto-resistance effect may become very large, contrary to the prediction of the freepath theory.


Author(s):  
Ю.Н. Ханин ◽  
Е.Е. Вдовин

AbstractThe photoconductivity and its relaxation characteristics in tunneling p – i – n GaAs/AlAs heterostructures under pulsed illumination is studied. Quantum oscillations in the photoconductivity are detected depending on the bias voltage with the period independent of the light wavelength, as well as an oscillating component of the relaxation curves caused by modulation of the recombination rate at the edge of a triangular quantum well in the undoped i layer, as in the case of photoconductivity oscillations. The common nature of oscillations of the steady-state photoconductivity and relaxation curves under pulsed illumination is directly confirmed by the lack of an oscillating component in both types of dependences of some studied p–i–n heterostructures. Simultaneous suppression of the observed oscillations of dependences of both types as the temperature increases to 80 K also confirms the proposed mechanism of their formation. The dependences of these oscillations on the magnetic field and light flux power are studied. Oscillation-amplitude suppression in a magnetic field of ~2 T perpendicular to the current is caused by the effect of the Lorentz force on the ballistic motion of carriers in the triangular-quantum-well region.


2008 ◽  
Vol 34 (7) ◽  
pp. 538-542 ◽  
Author(s):  
O. V. Kirichenko ◽  
I. V. Kozlov ◽  
D. Krstovska ◽  
V. G. Peschanskiĭ

Sign in / Sign up

Export Citation Format

Share Document