Structural Properties of Thin Films Obtained by Magnetron Sputtering of Polydiacetylene

2020 ◽  
Vol 62 (11) ◽  
pp. 2184-2190
Author(s):  
O. A. Streletskii ◽  
I. A. Zavidovskii ◽  
O. Yu. Nishchak ◽  
A. N. Shchegolikhin ◽  
N. F. Savchenko
2010 ◽  
Vol 518 (15) ◽  
pp. 4225-4230 ◽  
Author(s):  
A.S. Ingason ◽  
A.K. Eriksson ◽  
E. Lewin ◽  
J. Jensen ◽  
S. Olafsson

2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2013 ◽  
Vol 446-447 ◽  
pp. 259-262
Author(s):  
J.H. Gu ◽  
T. Zhang ◽  
Z.Y. Zhong ◽  
C.Y. Yang ◽  
J. Hou

Aluminium doped zinc oxide (AZO) thin films were prepared by magnetron-sputtering. The optical and structural properties of the films were investigated by optical transmission spectra and X-ray diffraction (XRD) measurements, respectively. The results indicate that the AZO films have hexagonal wurtzite structure with highly c-axis preferred orientation. The optical and structural properties of the films are observed to be subjected to the argon pressure. The AZO film prepared at the argon pressure of 0.5 Pa exhibits the largest crystallite size and the highest average visible transmittance. Also, the refractive index and optical energy-gap of the films were determined by optical characterization methods. The dispersion behavior of the refractive index was studied using the Sellmeier’s dispersion model.


2012 ◽  
Vol 626 ◽  
pp. 168-172
Author(s):  
Samsiah Ahmad ◽  
Nor Diyana Md Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop

Zinc Oxide (ZnO) thin films were deposited onto SiO2/Si substrates using radio frequency (RF) magnetron sputtering method as an Ammonia (NH3) sensor. The dependence of RF power (50~300 Watt) on the structural properties and sensitivity of NH3sensor were investigated. XRD analysis shows that regardless of the RF power, all samples display the preferred orientation on the (002) plane. The results show that the ZnO deposited at 200 Watt display the highest sensitivity value which is 44%.


Sign in / Sign up

Export Citation Format

Share Document