scholarly journals Nanocracks upon Fracture of Oligoclase

2021 ◽  
Vol 57 (6) ◽  
pp. 894-899
Author(s):  
V. I. Vettegren ◽  
A. V. Ponomarev ◽  
R. I. Mamalimov ◽  
I. P. Shcherbakov

Abstract—The spectrum of fractoluminescence (FL) upon fracture of the surface of oligoclase is obtained. The analysis of the spectrum has shown that fracture of crystals leads to the formation of electronically excited free radicals ≡Si−O• and Fe3• ions as well as electron traps. FL consisted of a set of the signals with the intensities varying by an order of magnitude. The duration of the signals was ~50 ns and the time interval between them varied from ~0.1 to 1 μs. Each signal contained four maxima associated with the destruction of barriers preventing the motion of dislocations along the sliding planes. These breakthroughs cause the formation of the smallest (“primary”) cracks. All other, larger cracks are formed by the coalescence of the “primary” cracks. The sizes of “primary” cracks range from ~10 to 20 nm and the time of their formation is 16 ns. The distribution of cracks by size (surface areas of crack walls) is power law with the exponent –1.9.

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Kalyana C. Pingali ◽  
Shuguang Deng ◽  
David A. Rockstraw

Ammonium nitrate was added to the spraying solution as a foaming agent to reduce the particle size of nanoparticles synthesized in the spray-pyrolysis process. Ammonium nitrate was effective in breaking the aerosol droplet size and generating nanoparticles that were of approximately one order-of-magnitude (from 200 to 20 nm) smaller diameter than those created in the absence of ammonium nitrate in the feed solution. This technique makes it possible to control the particle diameter of metallic nanoparticles below 20 nm.


1974 ◽  
Vol 1 (14) ◽  
pp. 42
Author(s):  
V.F. Motta ◽  
J.V. Bandeira

The total annual volume of littoral drift on either side of the mouth of Sergipe estuary, in the Northeast of Brazil, has been de_ termined by applying Caldwell's, Castanho's and Bijker's methods to the wave characteristics that had been recorded at a twenty-metre depth of water, over a whole year, for the design of an offshore oil terminal. The three computation methods yielded the same order of maj> nitude which was found to amount to about 80000Om^/year. The dominant drift is s outhwes tward, and its predicted amount is 660000m-*/year. It was also found that although the three methods lead to total re suits of the same order of magnitude, they do not agree as to the vari^ ation of littoral drift over the year for the s ame waves. An eight-metre deep shipping channe 1 has been dredgedaccross the bar. The channel was surveyed in December 1971, August and Decem ber 1972, and a cubature of the deposits was made after the littoraldrift computations had been carried out. As the latter had been per formed on a monthly basis, a comparison became possible between pre dieted and actual volumes of deposits for the same lengths of time. The predicted volumes for the whole year were found to be from 34 to 46% greater than the actual results. However, for the time interval August-December 1972 a remarkable agreement was found be^ tween predicted and actual results.


This research was conducted to produce the magnetite (Fe3O4 ) nanoparticles extracted from the industrial millscale waste. Then, the micron size samples were extracted and grounded on the high energy ball milling (HEBM) at various milling time for 4, 8, 12, 16 and 20 h. The formation of nanosized single-phase hexagonal spinel has been observed with XRD analysis as early as 4 h milling time. The FTIR transmission spectrum shows the appearance of a Fe-O functional group for each sample. HRTEM images showed that all the samples had a small particle size of 5-20 nm with uniform distribution. The specific surface area of the 5 adsorbents increased after the 8 h milling time and it showed reduction after that. The magnetite adsorbents then utilized the adsorbent in Cadmium ions removal of the aqueous solution. Fe3O4 with 8 h milling time was able to remove 9.81 mg of cadmium ions with 1 g of adsorbents consume. The removal of the cadmium ions detected related to the particles size, surface areas and saturation magnetization. This research successfully revealed that the higher saturation magnetization contributed to high removal percentages in cadmium ions of aqueous solutions. Fe3O4 extraction from mill scales waste is cost-effective, the process is eco-friendly and thus, potentially to be applied for wastewater treatment.


2015 ◽  
Vol 1 (4) ◽  
pp. e1400222 ◽  
Author(s):  
Pierre-François Duc ◽  
Michel Savard ◽  
Matei Petrescu ◽  
Bernd Rosenow ◽  
Adrian Del Maestro ◽  
...  

In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density ρs and superfluid velocity vs increase as a power law of temperature described by a universal critical exponent that is constrained to be identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nanopores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the following: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of vs that surprisingly can be well-fitted by a power law with a single exponent over a broad range of temperatures; and (iii) decreasing critical velocities as a function of decreasing radius for channel sizes below R ≃ 20 nm, in stark contrast with what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius.


1989 ◽  
Vol 134 ◽  
pp. 393-395
Author(s):  
A. Lawrence

I am one of a large team studying an X-ray flux limited sample of 35 AGN, at radio (Unger et al 1987 MNRAS 228 521), IR (Ward et al 1987 ApJ 315 74 and Carleton et al 1987 ApJ 318 595), optical-UV (Boisson et al in preparation), and X-ray (Turner PhD thesis, Leicester) wavelengths. A gap in the data which we have just started to fill is the millimetre region. (Lawrence, Ward, Elvis, Robson, Smith, Duncan, and Rowan-Robinson). In Jan/Feb 1988 we made measurements of twelve objects at 800 and 1100 micron, using the ROE/QMC bolometer, UKT14, on the new UK/Dutch/Canadian facility on Mauna Kea, the James Clerk Maxwell Telescope, reaching 1 sigma sensitivity of ∼15–20 mJy, an order of magnitude improvement over previous data. The four radio loud objects measured were easily detected, as expected. These all have a strong blazar component, showing smooth but curved spectra over many decades, possibly log-Gaussian in form (Landau et al 1986 ApJ 308 78), or alternatively explicable by a small number of power-law components (Robson et al 1988 MNRAS in press). In any case, other evidence points to non-thermal radiation by a relativistically moving feature (high polarization, strong variability, superluminal motion). Eight radio quiet objects were measured, and upper limits only found, except for a possible four sigma detection of N2992. In all cases, the mm limits are far below the 100 micron IRAS fluxes. In four of the nearest objects, this is not too surprising, as fluxes are rising steeply throughout 12 to 100 micron, a sign that the IRAS data is dominated by cool interstellar dust emission (“cirrus”) from the discs of the parent galaxies. However we can also say that any postulated power law component of spectral index ∼1 dominating the near-IR, must become self-absorbed around ∼200 micron if the mm limits are not to be exceeded. Four rather more interesting objects are shown in Fig. 1. Again, any underlying power-law component must be self-absorbed by ∼100 micron, but is not clear that such a power-law is needed. N5506 and IC4329A have falling optical energy distributions, and large H α/Hβ ratios; on the other hand, the IR continuum lies well above the X-ray level, so there is good argument for absorption and re-radiation by dust. N4151, while flat through the near-IR-optical, has a large hump centred at ∼25 micron. Particularly important here are further new measurements by Engargiola et al (1987, ApJ in press),and Edelson et al (1988, preprint) which show the energy distribution to be falling so steeply from 155 to 438 micron that self-absorbed synchrotron is ruled out in this region. In fact, the whole energy distribution from mm to UV can be modelled without a power law at all, as shown in Fig 2. This uses a starburst component (from Rowan-Robinson and Crawford 1988, MNRAS in press), hot dust represented by three greybodies at 200K, 500K, and 1000K, starlight from a nuclear cusp, and a blackbody at 30,000K. Even MKN590, which at first sight looks like a power-law, can be modelled by similar components (Fig. 3).


2004 ◽  
Vol 4 (3) ◽  
pp. 475-483 ◽  
Author(s):  
R. H. Guthrie ◽  
S. G. Evans

Abstract. One hundred and one landslides were documented across 370km2 following a rainstorm that swept the British Columbia coastline on 18 November 2001. Despite the regional nature of the storm, the landslides were spaced close together, even within the study area. Landslide clustering is attributed to high intensity storm cells too small to be recorded by the general hydrometric network. The evidence nicely corroborates previous historical studies that reached similar conclusions, but against which there was no modern analog analyzed for coastal British Columbia. Magnitude-cumulative frequency data plotted well on a power law curve for landslides greater than 10000m2, however, below that size several curves would fit. The rollover effect, a point where the data is no longer represented by the power law, therefore occurs at about 1.5 orders of magnitude higher than the smallest landslide. Additional work on Vancouver Island has provided evidence for rollovers at similar values. We propose that the rollover is a manifestation of the physical conditions of landslide occurrence and process uniformity. The data was fit to a double Pareto distribution and P-P plots were generated for several data sets to examine the fit of that model. The double Pareto model describes the bulk of the data well, however, less well at the tails. For small landslides (<650m2) this may still be a product of censoring. Landscape denudation from the storm was averaged over the study area and equal to 2mm of erosion. This is more than an order of magnitude larger than the annual rate of denudation reported by other authors for coastal British Columbia, but substantially less than New Zealand. The number is somewhat affected by the rather arbitrary choice of a study area boundary.


2018 ◽  
Vol 2 (4) ◽  
pp. 23 ◽  
Author(s):  
Vasily E. Tarasov

The memory means an existence of output (response, endogenous variable) at the present time that depends on the history of the change of the input (impact, exogenous variable) on a finite (or infinite) time interval. The memory can be described by the function that is called the memory function, which is a kernel of the integro-differential operator. The main purpose of the paper is to answer the question of the possibility of using the fractional calculus, when the memory function does not have a power-law form. Using the generalized Taylor series in the Trujillo-Rivero-Bonilla (TRB) form for the memory function, we represent the integro-differential equations with memory functions by fractional integral and differential equations with derivatives and integrals of non-integer orders. This allows us to describe general economic dynamics with memory by the methods of fractional calculus. We prove that equation of the generalized accelerator with the TRB memory function can be represented by as a composition of actions of the accelerator with simplest power-law memory and the multi-parametric power-law multiplier. As an example of application of the suggested approach, we consider a generalization of the Harrod-Domar growth model with continuous time.


1995 ◽  
Vol 19 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Giuseppe Cilento ◽  
Waldemar Adam

2005 ◽  
Vol 18 (22) ◽  
pp. 4715-4730 ◽  
Author(s):  
P. Räisänen ◽  
H. W. Barker ◽  
J. N. S. Cole

Abstract The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. Results for five experiments are used to assess the impact of McICA-related noise on simulations of global climate made by the NCAR Community Atmosphere Model (CAM). The experiment with the least noise (an order of magnitude below that of basic McICA) is taken as the reference. Two additional experiments help demonstrate how the impact of noise depends on the time interval between calls to the radiation code. Each experiment is an ensemble of seven 15-month simulations. Experiments with very high noise levels feature significant reductions to cloudiness in the lowermost model layer over tropical oceans as well as changes in highly related quantities. This bias appears immediately, stabilizes after a couple of model days, and appears to stem from nonlinear interactions between clouds and radiative heating. Outside the Tropics, insignificant differences prevail. When McICA sampling is confined to cloudy subcolumns and when, on average, 50% more samples, relative to basic McICA, are drawn for selected spectral intervals, McICA noise is much reduced and the results of the simulation are almost statistically indistinguishable from the reference. This is true both for mean fields and for the nature of fluctuations on scales ranging from 1 day to at least 30 days. While calling the radiation code once every 3 h instead of every hour allows the CAM additional time to incorporate McICA-related noise, the impact of noise is enhanced only slightly. In contrast, changing the radiative time step by itself produces effects that generally exceed the impact of McICA’s noise.


Sign in / Sign up

Export Citation Format

Share Document