Uncoupling proteins UCP2 and UCP3 from mitochondria of liver and skeletal muscle of ground squirrel Spermophilus undulatus do not transport pyruvate in contrast to UCP1 from brown adipose tissue

Author(s):  
N. P. Komelina ◽  
Z. G. Amerkhanov
2003 ◽  
Vol 95 (6) ◽  
pp. 2408-2415 ◽  
Author(s):  
Yoriko Masuda ◽  
Satoshi Haramizu ◽  
Kasumi Oki ◽  
Koichiro Ohnuki ◽  
Tatsuo Watanabe ◽  
...  

Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.


1971 ◽  
Vol 49 (6) ◽  
pp. 545-553 ◽  
Author(s):  
Jean Himms–Hagen

The aim of these experiments was to depress the increased metabolic activity of the brown adipose tissue in the intact rat during acclimation to cold in order to elucidate further the possible thermogenic and endocrine functions of this tissue. The antibiotic oxytetracycline was administered twice daily for 2 weeks to rats living at 4 °C in an attempt to inhibit the proliferation of mitochondria and of mitochondrial inner membrane known to occur in the brown adipose tissue in response to cold; control rats received saline during the same period. Total cytochrome oxidase activity served as an index of the amount of mitochondrial inner membrane in brown adipose tissue, liver, and skeletal muscle. The development of an enhanced calorigenic response to intravenously infused noradrenaline served as an index of the extent of acclimation to cold.Treatment with oxytetracycline inhibited both the cold-induced increase in cytochrome oxidase activity in brown adipose tissue and the cold-induced development of an enhanced calorigenic response to noradrenaline in the intact rats; a direct correlation was noted between the amount of cytochrome oxidase in brown adipose tissue and the size of the metabolic response to noradrenaline of the intact animals. However, the amount of oxygen that could be consumed by the total cytochrome oxidase in the brown adipose tissue was itself too small to account for the increase in oxygen consumption by the rat. Treatment of the rats with oxytetracycline did not alter the cold-induced growth of brown adipose tissue (as judged by the increase in wet weight and the increase in total protein); it also did not alter the cytochrome oxidase activities of liver or skeletal muscle. The effect of oxytetracycline seems, therefore, to be fairly specific for the mitochondria of the most rapidly dividing tissue, the brown adipose tissue. The conclusion is drawn that a protein synthesized in the mitochondria of the brown adipose tissue in response to cold is essential for adaptation to cold.


2017 ◽  
Vol 102 (12) ◽  
pp. 1584-1595 ◽  
Author(s):  
Sofía Moran-Ramos ◽  
Natali N. Guerrero-Vargas ◽  
Rebeca Mendez-Hernandez ◽  
Maria del Carmen Basualdo ◽  
Carolina Escobar ◽  
...  

Author(s):  
Miriam A. Holzman ◽  
Abigail Ryckman ◽  
Tova M. Finkelstein ◽  
Kim Landry-Truchon ◽  
Kyra A. Schindler ◽  
...  

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood.Hoxa5patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show thatHoxa5also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5.Hoxa5null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded inHoxa5mutants. Conditional deletion ofHoxa5withMyf5/Crecan reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary withinMyf5-positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows thatHoxa5does not act cell-autonomously to repress skeletal muscle fate. Interestingly,Hoxa5-dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role forHoxa5in multiple tissues. Together, these findings establish a role forHoxa5in embryonic BAT development.


Sign in / Sign up

Export Citation Format

Share Document