Structure, Phase Composition, and Mechanical Properties of Composites Based on ZrO2 and Multi-Walled Carbon Nanotubes

2021 ◽  
Vol 12 (2) ◽  
pp. 482-490
Author(s):  
A. A. Leonov ◽  
E. V. Abdulmenova ◽  
M. P. Kalashnikov
2020 ◽  
Vol 10 ◽  
pp. 56-68
Author(s):  
A. A. Leonov ◽  
◽  
E. V. Abdulmenova ◽  
M. P. Kalashnikov ◽  
◽  
...  

In this work, composites based on yttria-stabilized zirconia (3Y-TZP), with additives of 1, 5 and 10 wt. % multi-walled carbon nanotubes (MWCNTs) were investigated. Samples were obtained by spark plasma sintering at a temperature of 1500 °C. It was found that MWCNTs retain their structure after high-temperature sintering, they are located along the grain boundaries of ZrO2, forming a network structure. Found that the addition of 1 wt. % MWCNTs increase the relative density of the composite from 98.3 % to 99.0 %. It is noted that nanotubes can significantly affect the phase composition of composites. Additive 5 wt. % MWCNT partially limits the monoclinic-tetragonal phase transition of ZrO2, and the addition of 10 wt. % MWCNTs leads to the formation of a cubic phase of zirconium carbide. It was found that the fracture toughness of the composite with 10 wt. % MWCNTs increases from 4.0 to 5.7 MPa·m1/2.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Sign in / Sign up

Export Citation Format

Share Document