Kinetics of hydrolysis of peroxodisulphate ions in acidic medium to peroxomonosulphuric acid

1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.

1975 ◽  
Vol 53 (24) ◽  
pp. 3697-3701 ◽  
Author(s):  
Milton Cornelius Weekes ◽  
Thomas Wilson Swaddle

The rate of hydrolysis of iodopentaaquochromium(III) ion has been measured as a function of pressure (0.1 to 250 MPa) and hydrogen ion concentration (0.1 to 1.0 mol kg−1) at 298.2 K and ionic strength 1.0 mol kg−1 (aqueous HClO4–LiClO4). The volumes of activation for the acid independent and inversely acid dependent hydrolysis pathways are −5.4 ± 0.5 and −1.6 ± 0.3 cm3 mol−1 respectively, and are not detectably pressure-dependent. Consideration of these values, together with the molar volume change of −3.3 ± 0.3 cm3 mol−1 determined dilatometrically for the completed hydrolysis reaction, indicates that the mechanisms of the two pathways are associative interchange (Ia) and dissociative conjugate base (Dcb) respectively.


1968 ◽  
Vol 2 (9) ◽  
pp. 234-243 ◽  
Author(s):  
Inga Christenson

The products and kinetics of hydrolysis of the nerve gas antidote bis(4-hydroxyiminomethyl - 1 - pyridinemethyl) ether dichloride (Toxogonin ®) have been investigated. A survey of these studies is given: The hydrolytic reactions were studied in the pH range 1 M hydrochloric acid to 1 M sodium hydroxide at 25, 45, 75 and 85° C. Rate constants were determined in dilute aqueous solution, generally with an initial Toxogonin concentration of 0.01 mg per ml. In addition, a report is given concerning two-year storage of 25 percent (w/v) Toxogonin solutions at pH 2.5, 3.0 and 3.5. The solutions were stored in glass or polypropylene ampuls at 5, 15, 25 and 45°C. At 5 and 15C° decomposition was negligible, at 25 and 45 °C average decomposition was 1.5 percent and 3.3 percent, respectively.


1975 ◽  
Vol 53 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Yu-Keung Sze ◽  
Donald E. Irish

Raman spectroscopy has been employed to follow the relatively slow rate of hydrolysis of acetonitrile, catalyzed by mercury(II). Raman lines at 2275 and 2305 cm−1 are characteristic of CH3CN bound to Hg2+, and are distinct from lines of bulk solvent. The intensities of these new lines decrease with time. From the intensities, concentrations of bound acetonitrile, [CH3CN]B were calculated for a time span of 400 min. The data fit a second order rate law: Rate = k[CH3CN]B[H2O]. The specific rate constant, k, obtained from four sets of data for the system Hg(ClO4)2–CH3CN–H2O equals 1.05 ± 0.06 × 10−4 mol−1 1 min−1 at 25 °C. The energy of activation is 18.9 kcal mol−1. In the proposed mechanism water molecules attack acetonitrile molecules which are bound to Hg2+ and form a mercury(II)–acetamide complex. Raman lines characteristic of this species are observed. This species slowly converts to mercury(II) ammine complexes and acetic acid. Anions which coordinate with Hg2+ more strongly than CH3CN, such as nitrate or acetate, slow or prevent the hydrolysis reaction.


1981 ◽  
Vol 193 (1) ◽  
pp. 245-249 ◽  
Author(s):  
A J Makoff ◽  
A D B Malcolm

The rate of hydrolysis of the imido ester methyl acetimidate and its rate of amidination of denatured aldolase were investigated under different conditions of temperature, pH and ionic strength. Both rate constants increase greatly with temperature, whereas ionic strength has no effect on either. The effect of pH is more complex. Between pH 6.8 and 8.8 the rate of hydrolysis decreases and the rate of amidination increases. These results are discussed in terms of the reaction mechanisms involved.


1984 ◽  
Vol 62 (4) ◽  
pp. 452-456 ◽  
Author(s):  
J. A. Owen ◽  
K. Nakatsu

The kinetics of hydrolysis of dipropanoylmorphine (DPM) and dibutanoylmorphine (DBM) in human blood fractions and for diacetylmorphine (DAM) and DBM in rat blood fractions were investigated. In each case the hydrolysis of morphine diesters terminated with the production of the corresponding 6-monoester derivative. Generally, decreases in Km and Vmax were observed for the plasma, red blood cell (RBC) cytosol, and RBC membrane esterases responsible for morphine diester hydrolysis as the alkyl chain length of the ester moiety increased. This resulted in an overall decrease in the rate of hydrolysis of morphine diesters by human or rat blood with longer chain homologs of DAM. The analgesic potency and duration of morphine, DAM, and DBM were assessed at various i.v. dosages in the rat by means of the tail-flick latency test. A comparison of equianalgesic doses of morphine, DAM, and DBM indicated that DAM and DBM were 11.5 and 6 times as potent and 0.8 and 1.2 times as long acting, respectively, as morphine.


1983 ◽  
Vol 48 (5) ◽  
pp. 1305-1313
Author(s):  
Petr Komadel ◽  
Vladislav Holba ◽  
Štefan Truchlik

The kinetics of alkaline hydrolysis of maleic and fumaric acids monomethyl esters were studied as function of the temperature, ionic strength, and relative permittivity of the reaction medium. Electrostatic and nonelectrostatic contributions of the interaction energies of reacting species were calculated from the measured data and compared with the experimental activation energy values. The dependence of the rate constant on the temperature brings an evidence for the mutual compensation of the electrostatic and nonelectrostatic effects.


2006 ◽  
Vol 61 (3-4) ◽  
pp. 289-294 ◽  
Author(s):  
Pavla Zdražilová ◽  
Šárka Štěpánkova ◽  
Martina Vránova ◽  
Karel Komers ◽  
Alena Komersová ◽  
...  

Kinetics and the mechanism of total in vitro hydrolyses (i.e. up to the exhaustion of substrate) of acetylcholine and acetylthiocholine by acetylcholinesterase and butyrylcholinesterase were studied in vitro in a batch reactor at 25 °C, pH 8 and ionic strength of 0.11 ᴍ. Every hydrolysis was monitored by 2 - 3 independent analytical methods. All studied types of enzymatic hydrolyses fulfilled the Michaelis - Menten reaction scheme with the irreversible second step. A table of obtained average values of rate constants and estimations of initial molar enzyme concentrations, and discussion of the results are presented.


Sign in / Sign up

Export Citation Format

Share Document