scholarly journals B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis

2013 ◽  
Vol 74 (1) ◽  
pp. 294-302 ◽  
Author(s):  
Laetitia Rapetti ◽  
Konstantia-Maria Chavele ◽  
Catherine M Evans ◽  
Michael R Ehrenstein

ObjectiveTo investigate whether regulatory T cells (Treg) can control B cell function in rheumatoid arthritis (RA) and if not to explore the basis for this defect.MethodsSuppression of B cell responses by Treg was analysed in vitro by flow cytometry and ELISA using peripheral blood mononuclear cells from 65 patients with RA and 41 sex-matched and aged-matched healthy volunteers. Blocking and agonistic antibodies were used to define the role of Fas-mediated apoptosis in B cell regulation.ResultsTreg failed to restrain B cell activation, proinflammatory cytokine and antibody production in the presence of responder T cells in RA patients. This lack of suppression was not only caused by impaired Treg function but was also due to B cell resistance to regulation. In healthy donors, control by Treg was associated with increased B cell death and relied upon Fas-mediated apoptosis. In contrast, RA B cells had reduced Fas expression compared with their healthy counterparts and were resistant to Fas-mediated apoptosis.ConclusionsThese studies demonstrate that Treg are unable to limit B cell responses in RA. This appears to be primarily due to B cell resistance to suppression, but Treg defects also contribute to this failure of regulation. Our data identify the Fas pathway as a novel target for Treg-mediated suppression of B cells and highlight a potential therapeutic approach to restore control of B cells by Treg in RA patients.

Cell Reports ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 4110-4123.e4 ◽  
Author(s):  
Reza Nadafi ◽  
Catarina Gago de Graça ◽  
Eelco D. Keuning ◽  
Jasper J. Koning ◽  
Sander de Kivit ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Austin Negron ◽  
Olaf Stüve ◽  
Thomas G. Forsthuber

While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.


1975 ◽  
Vol 142 (5) ◽  
pp. 1165-1179 ◽  
Author(s):  
S K Pierce ◽  
N R Klinman

The ability of T cells to enhance the response of syngeneic and allogeneic B cells to thymus-dependent hapten-carrier conjugates was analyzed. This analysis was carried out on individual primary B cells in splenic fragment cultures derived from irradiated reconstituted mice. This system has several advantages: (a) the response of the B cells is entirely dependent on carrier priming of the irradiated recipient; (b) this B-cell response can be quantitated in terms of the number of responding cells; and (c) very small B-cell responses can be readily detected and analyzed. The results indicate that the majority of hapten-specific B cells were stimulated in allogeneic and syngeneic recipients only if these recipients were previously carrier primed. The number of B cells responding in carrier-primed allogeneic recipients was 60-70% of that in syngeneic carrier-primed recipients. The antibody-forming cell clones resulting from B cells stimulated in the allogeneic environment produced small amounts of antibody and antibody solely of the IgM immunoglobulin class, while the larger responses in syngeneic recipients were predominantly IgG1 or IgM plus IgG1. The capacity of collaborative interactions between carrier-primed T cells and primary B cells to yield IgG1 antibody-producing clones was shown to be dependent on syngeny between these cells in the H-2 gene complex. It is concluded that: (a) B cells can be triggered by T-dependent antigens to clone formation through collaboration with T cells which differ at the H-2 complex as long as these T cells recognize the antigen; (b) the immunoglobulin class produced by the progeny of stimulated B cells generally depends on the nature of the stimulatory event rather than the nature of the B cell itself; and (c) stimulation to IgG1 production is dependent on syngeny between the collaborating T and B cells probably within the Ir-1A region. The role of the Ia antigens in the formation of IgG1-producing clones is not yet clear; Ia identity could permit IgG1 production or, conversely, nonidentity of Ia could induce all allogeneic interactions which prohibit IgG1 production.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tyler C. Moore ◽  
Ronald J. Messer ◽  
Lorena M. Gonzaga ◽  
Jennifer M. Mather ◽  
Aaron B. Carmody ◽  
...  

ABSTRACTFriend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+T cell responses. Nonetheless, mice mount vigorous CD8+T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Directex vivoanalysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore,in vitrostudies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced byin vivodepletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.IMPORTANCEThe primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections.


2003 ◽  
Vol 198 (7) ◽  
pp. 1011-1021 ◽  
Author(s):  
Mark Y. Sangster ◽  
Janice M. Riberdy ◽  
Maricela Gonzalez ◽  
David J. Topham ◽  
Nicole Baumgarth ◽  
...  

Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 711
Author(s):  
Henry A. Utset ◽  
Jenna J. Guthmiller ◽  
Patrick C. Wilson

The generation of high affinity antibodies is a crucial aspect of immunity induced by vaccination or infection. Investigation into the B cells that produce these antibodies grants key insights into the effectiveness of novel immunogens to induce a lasting protective response against endemic or pandemic pathogens, such as influenza viruses, human immunodeficiency virus, or severe acute respiratory syndrome coronavirus-2. However, humoral immunity has largely been studied at the serological level, limiting our knowledge on the specificity and function of B cells recruited to respond to pathogens. In this review, we cover a number of recent innovations in the field that have increased our ability to connect B cell function to the B cell repertoire and antigen specificity. Moreover, we will highlight recent advances in the development of both ex vivo and in vivo models to study human B cell responses. Together, the technologies highlighted in this review can be used to help design and validate new vaccine designs and platforms.


2016 ◽  
Vol 196 (9) ◽  
pp. 3631-3641 ◽  
Author(s):  
Anping Xu ◽  
Ya Liu ◽  
Weiqian Chen ◽  
Julie Wang ◽  
Youqiu Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document