scholarly journals 1390 Bacterial Colonization of Preterm Infants: Impact of Biofilm Formation on the Nasogastric Feeding Tubes

2012 ◽  
Vol 97 (Suppl 2) ◽  
pp. A395-A396
Author(s):  
M. Gomez ◽  
L. Moles ◽  
A. Melgar ◽  
G. Bustos ◽  
J. Rodriguez
2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


2019 ◽  
Vol 98 (7) ◽  
pp. 739-745 ◽  
Author(s):  
C. Cugini ◽  
M. Shanmugam ◽  
N. Landge ◽  
N. Ramasubbu

The oral cavity contains a rich consortium of exopolysaccharide-producing microbes. These extracellular polysaccharides comprise a major component of the oral biofilm. Together with extracellular proteins, DNA, and lipids, they form the biofilm matrix, which contributes to bacterial colonization, biofilm formation and maintenance, and pathogenesis. While a number of oral microbes have been studied in detail with regard to biofilm formation and pathogenesis, the exopolysaccharides have been well characterized for only select organisms, namely Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Studies on the exopolysaccharides of other oral organisms, however, are in their infancy. In this review, we present the current research on exopolysaccharides of oral microbes regarding their biosynthesis, regulation, contributions to biofilm formation and stability of the matrix, and immune evasion. In addition, insight into the role of exopolysaccharides in biofilms is highlighted through the evaluation of emerging techniques such as pH probing of biofilm colonies, solid-state nuclear magnetic resonance for macromolecular interactions within biofilms, and super-resolution microscopy analysis of biofilm development. Finally, exopolysaccharide as a potential nutrient source for species within a biofilm is discussed.


2021 ◽  
pp. 088532822110511
Author(s):  
Youbin Li ◽  
Shaochuan Wang ◽  
Shidan Li ◽  
Jun Fei

Implant-related infection is a disastrous complication. Surface modification of titanium is considered as an important strategy to prevent implant-related infection. However, there is no recognized surface modification strategy that can be applied in clinic so far. We explored a new strategy of coating. The clindamycin-loaded titanium was constructed by layer-by-layer self-assembly. The release of clindamycin from titanium was detected through high performance liquid chromatography. Different titanium was co-cultured with Staphylococcus aureus for 24 h in vitro, then the effect of different titanium on bacterial colonization and biofilm formation was determined by spread plate method and scanning electron microscopy. Cytotoxicity and cytocompatibility of clindamycin-loaded titanium on MC3T3-E1 cells were measured by CCK8. The antibacterial ability of clindamycin-loaded titanium in vivo was also evaluated using a rat model of osteomyelitis. The number of osteoclasts in bone defect was observed by tartrate-resistant acid phosphatase staining. Bacterial burden of surrounding tissues around the site of infection was calculated by tissue homogenate and colony count. Clindamycin-loaded titanium could release clindamycin slowly within 160 h. It reduced bacterial colonization by three orders of magnitude compare to control ( p < .05) and inhibits biofilm formation in vitro. Cells proliferation and adhesion were similar on three titanium surfaces ( p > .05). In vivo, clindamycin-loaded titanium improved bone healing, reduced microbial burden, and decreased the number of osteoclasts compared control titanium in the rat model of osteomyelitis. This study demonstrated that clindamycin-loaded titanium exhibited good biocompatibility, and showed antibacterial activity both in vivo and in vitro. It is promising and might have potential for clinical application.


2007 ◽  
Vol 37 (2) ◽  
pp. 118-119
Author(s):  
R D Wammanda ◽  
J O Alegbejo

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M. Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium ). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials. Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Masaaki Minami ◽  
Hiroshi Takase ◽  
Mineo Nakamura ◽  
Toshiaki Makino

Porphyromonas gingivalis is an important pathogenic anaerobic bacterium that causes aspiration pneumonia. This bacterium frequently forms biofilms in the oral cavity and in respiratory tract-associated medical devices. Bacterial colonization that occurs in association with this biofilm formation is the main reason for incurable aspiration pneumonia. The Lonicera caerulea var. emphyllocalyx (LCE) fruit has been used in folk medicine in Hokkaido, the northern part of Japan. The aim of this study was to elucidate one of the antimicrobial mechanisms of LCE methanol extract (LCEE)—the inhibitory effect of LCEE on biofilm formation by P. gingivalis. Our results show that LCEE significantly reduced biofilm formation by three different P. gingivalis isolates in a concentration- and time-dependent manner that were quantified by the adsorption of safranin red. When LCEE was added to biofilms already formed by P. gingivalis, LCEE did not degrade the biofilm. However, treatment with LCEE significantly promoted the removal of existing biofilm by vibration compared to that of control. We also confirmed biofilm formation in LCEE-treated P. gingivalis in tracheal tubes using scanning electron microscopic (SEM) analysis. Cyanidin 3-O-glucoside (C3G), one of the components of LCE, also inhibited the formation of biofilm by P. gingivalis in a concentration-dependent manner. Our results reveal that LCEE may be an effective antibacterial substance for P. gingivalis-induced aspiration pneumonia because of its role in the suppression of bacterial biofilm formation in the oral cavity.


2019 ◽  
Vol 366 (17) ◽  
Author(s):  
Jiao Meng ◽  
Jiaqi Bai ◽  
Junhong Xu ◽  
Can Huang ◽  
Jingyu Chen

ABSTRACT A thorough understanding of the mechanisms of Rcs and EnvZ/OmpR phosphorelay systems that allow Yersinia enterocolitica to thrive in various environments is crucial to prevent and control Y. enterocolitica infections. In this study, we showed that RcsB and OmpR have the ability to function differently in modulating a diverse array of physiological processes in Y. enterocolitica. The rcsB mutant stimulated flagella biosynthesis and increased motility, biofilm formation and c-di-GMP production by upregulating flhDC, hmsHFRS and hmsT. However, mutation in ompR exhibited a non-motile phenotype due to the lack of flagella. Biofilm formation was reduced and less c-di-GMP was produced through the downregulation of flhDC, hmsHFRS and hmsT expression when Y. enterocolitica was exposed to low osmolarity conditions. Furthermore, OmpR was identified to be important for Y. enterocolitica to grow in extreme temperature conditions. Importantly, ompR mutations in Y. enterocolitica were more sensitive to polymyxin B and sodium dodecyl sulfate than rcsB mutations. Since motility, biofilm formation and environmental tolerance are critical for bacterial colonization of the host, these findings indicated that OmpR is more critical than RcsB in shaping the pathogenic phenotype of Y. enterocolitica.


1982 ◽  
Vol 101 (4) ◽  
pp. 607-610 ◽  
Author(s):  
David K. Stevenson ◽  
Susan M. Shahin ◽  
Clinton R. Ostrander ◽  
John A. Kerner ◽  
Ronald S. Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document