Non-collagen pathogenic variants resulting in the osteogenesis imperfecta phenotype in children: a single-country observational cohort study

2021 ◽  
pp. archdischild-2021-322911
Author(s):  
Patrick Thornley ◽  
Nicholas Bishop ◽  
Duncan Baker ◽  
Joanna Brock ◽  
Paul Arundel ◽  
...  

Background/ObjectivesIn England, children (0–18 years) with severe, complex and atypical osteogenesis imperfecta (OI) are managed by four centres (Birmingham, Bristol, London, Sheffield) in a ‘Highly Specialised Service’ (HSS OI); affected children with a genetic origin for their disease that is not in COL1A1 or COL1A2 form the majority of the ‘atypical’ group, which has set criteria for entry into the service. We have used the data from the service to assess the range and frequency of non-collagen pathogenic variants resulting in OI in a single country.MethodsChildren with atypical OI were identified through the HSS OI service database. All genetic testing for children with OI in the service were undertaken at the Sheffield Diagnostic Genetics Service. Variant data were extracted and matched to individual patients. This study was done as part of a service evaluation project registered with the Sheffield Children’s Hospital Clinical Governance Department.ResultsOne hundred of 337 children in the HSS met the ‘atypical’ criteria. Eighty have had genetic testing undertaken; 72 had genetic changes detected, 67 in 13 genes known to be causative for OI. The most frequently affected genes were IFITM5 (22), P3H1 (12), SERPINF1 (8) and BMP1 (6).ConclusionAmong children with more severe forms of OI (approximately one-third of all children with OI), around 20% have pathogenic variants in non-collagen genes. IFITM5 was the most commonly affected gene, followed by genes within the P3H1 complex. These data provide additional information regarding the likelihood of different genetic origins of the disease in children with OI, which may influence clinical care.

2016 ◽  
Vol 44 (3) ◽  
pp. 514-519 ◽  
Author(s):  
Emily Youngblom ◽  
Mitzi Leah Murray ◽  
Peter H. Byers

Genetic testing can be used to determine if unexplained fractures in children could have resulted from a predisposition to bone fractures, e.g., osteogenesis imperfecta. However, uncertainty is introduced if a variant of unknown significance (VUS) is identified. Proper interpretation of VUS in these situations is critical because of its influence on clinical care and in court rulings. This study sought to understand how VUS are interpreted and used by practitioners when there is a differential diagnosis including both osteogenesis imperfecta and non-accidental injury.A 15-question survey was emailed to physicians who requested analysis of two genes, COL1A1 and COL1A2, from the University of Washington from 2005-2013 for patient cases involving suspicion of child abuse.Among the 89 participants, responses differed about when genetic testing should be ordered for osteogenesis imperfecta, who should be consulted about utilization of VUS test results, follow-up procedures, and who should receive the VUS results.There are no clear guidelines for how to interpret and follow up on VUS. In the legal setting, misinterpreted VUS could lead to unintended consequences and deleterious ramifications for family members. The need for better practice guidelines to help promote more equitable handling of these sensitive legal cases is clear.


2021 ◽  
pp. 174498712110031
Author(s):  
Julie C Menzies ◽  
Karl Emms ◽  
Tracey Valler

Background There are few opportunities for undergraduate nurses to undertake experiential learning about research design and conduct. The project aim was to implement and evaluate a placement to support the development of research knowledge and skills. Methods Establishment of a four-week placement, with allocation to a registered quality improvement/service evaluation project. Evaluation was obtained through questionnaires; student experience (pre, post and one year), supervisor experience and organisational impact (presentations, conference and grant submissions). Results 24 students (five cohorts) were allocated to 17 projects (2017–2019). 100% of students enjoyed the placement, gained research knowledge and insight into clinical care. At one year ( n = 15), 88% of students would consider undertaking a service evaluation and 65% ( n = 11) would consider further post-graduate study. All supervisors ( n = 20) reported the initiative valuable for student development. All project results were shared with relevant local teams to enable service planning and results from five projects been presented at eight national and international conferences. Three projects have contributed directly to further research grant submissions. Conclusion The programme supports the development of undergraduate nurses to be research ready and facilitates organisations to address high-priority safety and quality topics. Further resources are required to be able to increase placement capacity.


2021 ◽  
pp. 1-6
Author(s):  
Yusra F. Shao ◽  
Meghan DeBenedictis ◽  
Gabrielle Yeaney ◽  
Arun D. Singh

Uveal melanoma (UM) and renal cell carcinoma (RCC) can occur sporadically and as a manifestation of <i>BAP1</i> tumor predisposition syndrome. We aimed to understand the prevalence of germ line <i>BAP1</i> pathogenic variants in patients with UM and RCC. We reviewed patients managed at Cleveland Clinic between November 2003 and November 2019 who were diagnosed with UM and RCC. Charts were reviewed for demographic and cancer-related characteristics. RCC samples were tested for <i>BAP1</i> protein expression using immunohistochemical (IHC) staining, and testing for germ line <i>BAP1</i> pathogenic variants was performed as part of routine clinical care. Thirteen patients were included in the study. The average age at diagnosis of UM was 61.3 years. Seven patients underwent fine-needle aspiration biopsy for prognostic testing of UM (low risk =5, high risk =2). Twelve patients were treated with plaque radiation therapy, and 3 patients developed metastatic disease requiring systemic therapy. The median time to diagnosis of RCC from time of diagnosis of UM was 0 months. RCC samples were available for 7 patients for BAP1 IHC staining (intact =6, loss =1). All patients underwent nephrectomy (total = 3, partial = 8, unknown =2), and 1 received systemic therapy for metastatic RCC. Six patients underwent germ line <i>BAP1</i> genetic testing. Of these, 1 patient was heterozygous for a pathogenic variant of <i>BAP1</i> gene: c.1781-1782delGG, p.Gly594Valfs*48. The overall prevalence of germ line <i>BAP1</i> pathogenic variants in our study was high (1/6; 17%; 95% CI 0–46%). Patients with UM and RCC should be referred for genetic counseling to discuss genetic testing.


Author(s):  
Emily Breidbart ◽  
Liyong Deng ◽  
Patricia Lanzano ◽  
Xiao Fan ◽  
Jiancheng Guo ◽  
...  

Abstract Objectives There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. Methods We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. Results Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. Conclusions Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


Author(s):  
Suzanne C. E. H. Sallevelt ◽  
Alexander P. A. Stegmann ◽  
Bart de Koning ◽  
Crool Velter ◽  
Anja Steyls ◽  
...  

Abstract Purpose Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. Methods We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. Results In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. Conclusion ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryn D. Webb ◽  
Irini Manoli ◽  
Elizabeth C. Engle ◽  
Ethylin W. Jabs

AbstractThere is a broad differential for patients presenting with congenital facial weakness, and initial misdiagnosis unfortunately is common for this phenotypic presentation. Here we present a framework to guide evaluation of patients with congenital facial weakness disorders to enable accurate diagnosis. The core categories of causes of congenital facial weakness include: neurogenic, neuromuscular junction, myopathic, and other. This diagnostic algorithm is presented, and physical exam considerations, additional follow-up studies and/or consultations, and appropriate genetic testing are discussed in detail. This framework should enable clinical geneticists, neurologists, and other rare disease specialists to feel prepared when encountering this patient population and guide diagnosis, genetic counseling, and clinical care.


2021 ◽  
Author(s):  
Christina E. Hoei-Hansen ◽  
Marie L. B. Tygesen ◽  
Morten Dunø ◽  
John Vissing ◽  
Martin Ballegaard ◽  
...  

Abstract Aim The diagnostic workup in patients with delayed motor milestones suspected of having either myopathy or a congenital myasthenic syndrome is complex. Our hypothesis was that performance of a muscle biopsy and neurophysiology including stimulated single-fiber electromyography during an anesthetic procedure, combined with genetic testing has a high diagnostic quality. Materials and Methods Clinical and paraclinical data were retrospectively collected from 24 patients aged from 1 month to 10 years (median: 5.2 years). Results Neurophysiology examination was performed in all patients and was abnormal in 11 of 24. No patients had findings suggestive of a myasthenic syndrome. Muscle biopsy was performed in 21 of 24 and was normal in 16. Diagnostic findings included nemaline rods, inclusion bodies, fiber size variability, and type-II fiber atrophy. Genetic testing with either a gene panel or exome sequencing was performed in 18 of 24 patients, with pathogenic variants detected in ACTA1, NEB, SELENON, GRIN2B, SCN8A, and COMP genes. Conclusion Results supporting a neuromuscular abnormality were found in 15 of 24. In six patients (25%), we confirmed a genetic diagnosis and 12 had a clinical neuromuscular diagnosis. The study suggests that combined use of neurophysiology and muscle biopsy in cases where genetic testing does not provide a diagnosis can be useful in children with delayed motor milestones and clinical evidence of a neuromuscular disease.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lucie G. Hallenstein ◽  
Carol Sorensen ◽  
Lorraine Hodgson ◽  
Shelly Wen ◽  
Justin Westhuyzen ◽  
...  

Abstract Background Guidelines for referral to cancer genetics service for women diagnosed with triple negative breast cancer have changed over time. This study was conducted to assess the changing referral patterns and outcomes for women diagnosed with triple negative breast cancer across three regional cancer centres during the years 2014–2018. Methods Following ethical approval, a retrospective electronic medical record review was performed to identify those women diagnosed with triple negative breast cancer, and whether they were referred to a genetics service and if so, the outcome of that genetics assessment and/or genetic testing. Results There were 2441 women with newly diagnosed breast cancer seen at our cancer services during the years 2014–2018, of whom 237 women were diagnosed with triple negative breast cancer. Based on age of diagnosis criteria alone, 13% (31/237) of our cohort fulfilled criteria for genetic testing, with 81% (25/31) being referred to a cancer genetics service. Of this group 68% (21/31) were referred to genetics services within our regions and went on to have genetic testing with 10 pathogenic variants identified; 5x BRCA1, 4x BRCA2 and × 1 ATM:c.7271 T > G. Conclusions Referral pathways for women diagnosed with TNBC to cancer genetics services are performing well across our cancer centres. We identified a group of women who did not meet eligibility criteria for referral at their time of diagnosis, but would now be eligible, as guidelines have changed. The use of cross-discipline retrospective data reviews is a useful tool to identify patients who could benefit from being re-contacted over time for an updated cancer genetics assessment.


Sign in / Sign up

Export Citation Format

Share Document