scholarly journals Dysphagia unveiling systemic immunoglobulin light-chain amyloidosis with multiple myeloma

2018 ◽  
pp. bcr-2018-226331 ◽  
Author(s):  
Juan Gonzalez ◽  
Ahsan Wahab ◽  
Kavitha Kesari

Dysphagia is an uncommon presentation of systemic immunoglobulin light-chain (AL) amyloidosis with multiple myeloma (MM). Gastrointestinal (GI) involvement usually manifests with altered motility, malabsorption or bleeding. Furthermore, patients identified with GI amyloidosis, without previous diagnosis of a plasma cell disorder, are extremely rare. We report an elderly woman who presented with acute on chronic cardiac dysfunction, sick sinus syndrome and acute renal failure. While admitted, she developed intermittent dysphagia to both solids and liquids. Oesophagogastroduodenoscopy showed ulcerations of oesophagus and duodenum. Biopsies revealed focal amyloid deposition, stained with Congo red. Renal biopsy revealed amyloid deposition in renal arterioles. She underwent a bone marrow biopsy confirming MM, represented by more than 15% plasma cell population. She was started on treatment for heart failure, induction chemotherapy for MM and percutaneous gastrostomy tube for feeding. However, she continued to deteriorate, eventually opting for hospice, and ultimately died 2 days after discharge from hospital.

2020 ◽  
Vol 143 (4) ◽  
pp. 373-380
Author(s):  
Layla Van Doren ◽  
Suzanne Lentzsch

Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare, life-threatening disease characterized by the deposition of misfolded proteins in vital organs such as the heart, the lungs, the kidneys, the peripheral nervous system, and the gastrointestinal tract. This causes a direct toxic effect, eventually leading to organ failure. The underlying B-cell lymphoproliferative disorder is almost always a clonal plasma cell disorder, most often a small plasma cell clone of <10%. Current therapy is directed toward elimination of the plasma cell clone with the goal of preventing further organ damage and reversal of the existing organ damage. Autologous stem cell transplantation has been shown to be a very effective treatment in patients with AL amyloidosis, although it cannot be widely applied as patients are often frail at presentation, making them ineligible for transplantation. Treatment with cyclophosphamide, bortezomib, and dexamethasone has emerged as the standard of care for the treatment of AL amyloidosis. Novel anti-plasma cell therapies, such as second generation proteasome inhibitors, immunomodulators, monoclonal antibodies targeting a surface protein on the plasma cell (daratumumab, elotuzumab), and the small molecular inhibitor venetoclax, have continued to emerge and are being evaluated in combination with the standard of care. However, there is still a need for therapies that directly target the amyloid fibrils and reverse organ damage. In this review, we will discuss current and emerging nonchemotherapy treatments of AL amyloidosis, including antifibril directed therapies under current investigation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 809-809
Author(s):  
Vishwanathan Hucthagowder ◽  
Jahangheer Shaik ◽  
Mark Fiala ◽  
Jacob Paasch ◽  
Rakesh Nagarajan ◽  
...  

Abstract Abstract 809 Immunoglobulin light chain amlyloidosis (AL) is a rare plasma cell disorder characterized by deposition of misfolded light chains in various organ systems with an average survival of 1–2 years. AL is also the most common form of systemic amyloidosis with 1200–3200 newly diagnosed cases reported annually in the United States. Very little is known regarding specific genomic aberrations associated with AL-amyloidosis. Aside from the light chain selection, no phenotypic or genetic features have been identified that distinguish AL amyloidosis from other plasma cell dyscrasias. Understanding the genetics of AL and the molecular mechanisms involved in amyloid formation may lead to early diagnosis and the identification of novel drug targets and therapies. We therefore have attempted to study the genomic landscape of AL patients and MM for comparison. Genomic copy number and loss of heterozygosity (LOH) analyses were performed on DNA derived from tumor (CD138 sorted cells) and matched germline (skin) from biopsy proven AL patients using Affymetrix single nucleotide polymorphism (SNP) 6.0 arrays. Numerous genomic changes with gains in chromosome 1q, 6, 9, 11q, 15, 19 and 21 and loss on chromosome 1p, 2q, 8, 10, 12, 13, 14, 16, 18, 20 and 22 were observed in more than 10% of the patients. Recurrent genomic changes in about 249 segments involving 457 genes were present in about 1/3 of AL patients. In particular, deletion of IGK, IGH, PIK3CA, FLT3, RB1, PCDH9, GPC6, RASA3, ADAM6 genes and amplification of CFHR1, JAK2, GCNT1, TSC1, PGR genes were observed. Gene network analysis showed five distinct major modules consisting of 51 distinct elements and involving PDGF, TP53, interleukin signaling, TRKA signaling, cell cycle and mitotic pathways were enriched. Allele specific copy number analysis in tumor (ASCAT) profile showed increased ploidy status of the AL genome in 47% of the assessed patients. LOH was observed in chromosomes 4, 5, 6, 8, 9, 12, 13, 18 and 22 in 30% of patients, ranging from 5Mb to entire chromosome. Furthermore, genomic comparisons of AL with multiple myeloma (MM) showed the typical archetype of myeloma's signature with exception of gain of chromosomes 3, 5, 7 and loss of chromosome 6q and 8p. Interestingly deletion of IGH, IGK locus and PIK3CA gene were observed at a higher frequency in AL patients. Categorical analysis using isotype specific classification in AL showed a significantly higher frequency of deletion in chromosome 14, 13, 8 and amplification of chromosome 9q in the kappa type than lambda isotype. To the best of our knowledge, this is the first ultra-high resolution study of the genomic landscape of AL amyloidosis. In this study, we have found several novel genes and pathways associated with this rare disease. The numerous copy number alterations of AL thus reflect the genomic complexity and the heterogeneity of this disease. Additional genome-wide analysis in a larger panel with target organ stratified patients is under way and may further our understanding of genetic changes specifically associated with AL. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Feihong Ding ◽  
Yun Li ◽  
Shailesh Balasubramanian ◽  
Subha Ghosh ◽  
Jason N Valent ◽  
...  

ABSTRACT Amyloidosis is a heterogeneous group of diseases characterized by the extracellular deposition of misfolded proteins that can affect either systemically or locally confined to one system. Pulmonary amyloidosis is rare and can be classified into three forms according to the anatomic site of involvement: nodular pulmonary amyloidosis, tracheobronchial amyloidosis and diffuse alveolar-septal amyloidosis. The former two usually represent localized amyloid disease and the latter represents systemic disease. Typically lung parenchymal and tracheobronchial amyloidosis do not present together in localized forms of pulmonary amyloidosis. Here we report a unique case of localized pulmonary immunoglobulin light-chain amyloidosis, manifested as both parenchymal nodules and tracheobronchial amyloid deposition.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linchun Xu ◽  
Yongzhong Su

AbstractImmunoglobulin light chain amyloidosis (AL) is an indolent plasma cell disorder characterized by free immunoglobulin light chain (FLC) misfolding and amyloid fibril deposition. The cytogenetic pattern of AL shows profound similarity with that of other plasma cell disorders but harbors distinct features. AL can be classified into two primary subtypes: non-hyperdiploidy and hyperdiploidy. Non-hyperdiploidy usually involves immunoglobulin heavy chain translocations, and t(11;14) is the hallmark of this disease. T(11;14) is associated with low plasma cell count but high FLC level and displays distinct response outcomes to different treatment modalities. Hyperdiploidy is associated with plasmacytosis and subclone formation, and it generally confers a neutral or inferior prognostic outcome. Other chromosome abnormalities and driver gene mutations are considered as secondary cytogenetic aberrations that occur during disease evolution. These genetic aberrations contribute to the proliferation of plasma cells, which secrete excess FLC for amyloid deposition. Other genetic factors, such as specific usage of immunoglobulin light chain germline genes and light chain somatic mutations, also play an essential role in amyloid fibril deposition in AL. This paper will propose a framework of AL classification based on genetic aberrations and discuss the amyloid formation of AL from a genetic aspect.


Blood ◽  
2015 ◽  
Vol 125 (21) ◽  
pp. 3281-3286 ◽  
Author(s):  
Merrill D. Benson ◽  
Juris J. Liepnieks ◽  
Barbara Kluve-Beckerman

Key Points Protein and DNA analyses reveal that mutation in the immunoglobulin κ light-chain constant region gene may cause hereditary amyloidosis. Sequencing of immunoglobulin light-chain constant region genes is indicated for patients with AL amyloidosis and no evidence of a plasma cell dyscrasia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4051-4051
Author(s):  
Bruno Paiva ◽  
María-Belén Vidriales ◽  
Jose J. Perez ◽  
Maria-Consuelo López-Berges ◽  
Ramón García-Sanz ◽  
...  

Abstract Abstract 4051 Multiparameter flow cytometry (MFC) immunophenotyping has shown to be of value for differential diagnosis and minimal residual disease assessment in multiple myeloma. However, the clinical value of MFC immunophenotyping in other plasma cell disorders (PCD) remains largely unexplored. Systemic light chain (AL) amyloidosis is a rare PCD characterized by the accumulation of monoclonal light chain fragments leading to end-organ damage and short survival. Bone marrow (BM) plasma cell (PC) infiltration in AL is usually low and thus the identification of clonal PC can be often difficult by immunohistochemistry and/or immunofluorescence. In the present study we focused on 34 BM samples sent to our institution with a suspected diagnosis of AL. MFC immunophenotypic studies were performed using the following 4-color combinations of MoAbs (FITC/PE/PerCP-Cy5.5/APC): CD38/CD56/CD19/CD45 (n=34); in addition cy-Kappa/cy-Lambda/CD19/CD38 staining was add to confirm the clonal or polyclonal nature of BMPC in equivocal cases. Ploidy and cell cycle analysis were additionally performed in a subset of cases (n=12/34). From the total 34 cases included in the present study, 28 had a confirmed diagnosis of AL. The remaining 6 cases were finally diagnosed with localized - amyloidoma - (n=2) and familial (n=1) forms of amyloidosis, multiple myeloma-associated amyloid (n=2) and congestive pericarditis (n=1). Interestingly, the presence of clonal PC was detected by MFC in 27 of the 28 (96%) patients with AL; in turn, clonal PC were undetectable in the BM of all cases with localized and familial forms of amyloidosis. The median overall level of PC (M-PC plus N-PC) seen in MFC immunophenotypic analyses of BM samples of the 28 patients with AL was 1.9% (range: 0.1% - 15%), with a significant positive correlation between PC enumerated by MFC and conventional morphology (r=0.5; p=.01). Within the BMPC compartment, the median proportion of clonal PC was of 94% (mean 81% ± 29%); in 6 cases all BMPC were clonal while in the remaining 22 patients residual normal PC persisted (median of normal PC/BMPC 13% ± 31%). The most common aberrant phenotypes were down-regulation of CD19 (92%) and CD45 (83%), followed by overexpression of CD56 (56%) and infra-expression of CD38 (42%). Aneuploidy was only found in 18% of cases, all of them hyperdiploid. Cell cycle analysis showed a median % of S-phase and G2-Mitosis PC of 0.7% and 3.5%, respectively. Concerning patients' outcome, cases with undetectable normal PC (6/28, 21%) had a significantly decreased overall survival (OS) compared to patients with persistent BM normal PC at diagnosis (22/28, 79%) with 3-year OS rates of 0% vs. 59%, respectively (p=.001). In summary, these preliminary data suggests that MFC immunophenotyping investigations may be clinically relevant in patients with suspected amyloidosis for i) differential diagnosis between AL and other forms of amyloidosis and, ii) prognostication of patients with AL according to the presence or absence of baseline persistent normal PC. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Aleksey Novikov ◽  
Horatio Holzer ◽  
Robert A. DeSimone ◽  
Ghaith Abu-Zeinah ◽  
David J. Pisapia ◽  
...  

Neuromuscular respiratory failure is a rare complication of systemic immunoglobulin light chain amyloidosis. We describe a case of a 70-year-old Caucasian man with multiple myeloma who presented with worsening dyspnea. The patient was diagnosed with and treated for congestive heart failure but continued to suffer from hypercapnic respiratory insufficiency. He had restrictive physiology on pulmonary function tests and abnormal phrenic nerve conduction studies, consistent with neuromuscular respiratory failure. The diagnosis of systemic immunoglobulin light chain amyloidosis was made based on the clinical context and a cardiac biopsy. Despite treatment attempts, the patient passed away in the intensive care unit from hypercapnic respiratory failure. Autopsy revealed dense diaphragmatic amyloid deposits without phrenic nerve infiltration or demyelination or lung parenchymal involvement. Only 5 cases of neuromuscular respiratory failure due to amyloid infiltration of the diaphragm have been described. All cases, including this, were characterized by rapid progression and high mortality. Therefore, diaphragmatic amyloidosis should be on the differential for progressive neuromuscular respiratory failure in patients with multiple myeloma or any other monoclonal gammopathy. Given its poor prognosis, early recognition of this condition is essential in order to address goals of care and encourage pursuit of palliative measures.


Leukemia ◽  
2014 ◽  
Vol 28 (11) ◽  
pp. 2254-2256 ◽  
Author(s):  
N Weinhold ◽  
A Försti ◽  
M I da Silva Filho ◽  
J Nickel ◽  
C Campo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document