scholarly journals Hereditary systemic immunoglobulin light-chain amyloidosis

Blood ◽  
2015 ◽  
Vol 125 (21) ◽  
pp. 3281-3286 ◽  
Author(s):  
Merrill D. Benson ◽  
Juris J. Liepnieks ◽  
Barbara Kluve-Beckerman

Key Points Protein and DNA analyses reveal that mutation in the immunoglobulin κ light-chain constant region gene may cause hereditary amyloidosis. Sequencing of immunoglobulin light-chain constant region genes is indicated for patients with AL amyloidosis and no evidence of a plasma cell dyscrasia.

Blood ◽  
2014 ◽  
Vol 123 (22) ◽  
pp. 3440-3451 ◽  
Author(s):  
Ping Zhou ◽  
Xun Ma ◽  
Lakshmanan Iyer ◽  
Chakra Chaulagain ◽  
Raymond L. Comenzo

Key PointsImmunoglobulin light-chain and antibody production by plasma cells is significantly reduced by siRNA for the light-chain constant region. In plasma cells making intact antibodies, knockdown of light chains can cause terminal ER stress because of unpaired heavy chains.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3128-3128
Author(s):  
Jason D. Theis ◽  
Julie A. Vrana ◽  
Jeffrey D. Gamez ◽  
Angela Dispenzieri ◽  
Stephen R. Zeldenrust ◽  
...  

Abstract Background: Amyloidosis caused by immunoglobulin light chain (IGLC) deposition, so-called AL-type or primary amyloidosis, is the most common type of amyloidosis. It has been long believed that IGLC variable regions form the core of the AL-type amyloid deposits and peptides derived from IGLC constant region peptides are only occasionally integrated into this core. For this reason, the scientific effort to identify thge risk factors for development of AL amyloidosis and the biochemical characteristics amyloid deposits has focused on IGLC variable region derived proteins. To understand the peptide constituents of AL amyloidosis better, we undertook a comprehensive study of AL amyloidosis using a novel mass spectrometry based proteomic analysis approach. Methods: Paraffin embedded tissue from 100 cases of AL amyloidosis was studied. In each case amyloid type was previously established by clinical and pathological examination. Congo red stained paraffin sections were prepared and amyloid deposits were microdissected by laser microdissection microscopy. The microdissected tissue fragments were processed and trypsin digested into peptides. The peptides were analyzed by nano-flow liquid chromatography electrospray tandem mass spectrometry (LC-MS/MS). The resulting LC-MS/MS data were correlated to theoretical fragmentation patterns of tryptic peptide sequences from the Swissprot database using Scaffold (Mascot, Sequest, and X!Tandem search algorithms). Peptide identifications were accepted if they could be established at greater than 90.0% probability and protein identifications were accepted if they could be established at greater than 90.0% probability and contain at least 2 identified spectra. The identified proteins were subsequently examined for the presence or absence of amyloid related peptides. Results and Discussion: LC-MS/MS gave peptide profiles consistent with AL amyloidosis in each case. The analysis showed IGLC-lambda deposition in 66 cases and IGLC-kappa deposition in 34 of cases. In each case, LC MS/MS confirmed the previous clinicopathological diagnosis. Interestingly peptides representing IGLC constant region were present in each case. Using this LC-MS/MS methodology, theoretically it is possible to cover 78% of the IGLC-lambda and 87% IGLC-kappa constant regions. In our samples, the average coverage of the IGLC-lambda and IGLC-kappa constant regions were 40% (range 14–78%)and 55% (range 16–87%) respectively. Additionally, the distribution of the peptides suggested that in the majority of the cases whole of the IGLC constant region was deposited. LC MS/MS also identified IGLC-lambda variable region peptides in 37 of 66 cases and IGLC-kappa variable region peptides in 29 of 34 cases studied. The variable region coverage was more restricted and the peptides identified were frequently within the framework segments. It is likely that the peptides derived from CDR segments were present but not detected by the methodology as somatic hypermutation randomly alters the amino acid sequence in the CDR segments and such new sequences are not available in public databases used by algorithms for peptide identification. In the cases with the IGLC variable region hits, it was also possible to assign variable region family usage. IGLC-lambda cases frequently used IGLC-lambda variable region I, II and III families whereas, in IGLC-kappa cases, IGLC-kappa variable region I and III families dominated. Conclusions: AL amyloidosis can be accurately diagnosed using laser microdissection and LC-MS/MS based proteomic analysis in routine clinical specimens. AL amyloidosis invariably contains IGLC constant region peptides and, frequently, the whole of the constant region is deposited. This finding suggests that studies on molecular pathogenesis of amyloidosis should not only consider the IGLC-variable region but also the constant region. It is possible to identify IGLC variable region family usage in AL amyloidosis using LC MS/MS based proteomic analysis. In the clinical setting, this information may be helpful in predicting organ distribution and clinical outcome.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5601-5601
Author(s):  
Andrew J. Cowan ◽  
David G. Coffey ◽  
Teresa S. Hyun ◽  
Pamela S. Becker ◽  
Damian J. Green ◽  
...  

Abstract Background: The amyloidoses comprise a heterogeneous group of diseases characterized by misfolding of amyloidogenic proteins and subsequent deposition as amyloid fibrils. To date, over 30 proteins are known to be amyloidogenic (Sipe Amyloid 2014). Immunoglobulin light chain (AL) amyloidosis, a plasma cell dyscrasia, is the most common subtype. The standard diagnostic algorithm in AL amyloidosis is to obtain a biopsy of a clinically involve organ, and once Congo red positivity is confirmed, perform subtyping analyses with immunohistochemistry or mass spectrometry. Accurate subtyping of amyloidosis is essential to appropriate treatment, as misdiagnosis occurs in up to 10% of patients and may lead to inappropriate administration of chemotherapy (Comenzo Blood 2006; Lachmann NEJM 2002). We sought to determine the patterns of amyloid subtyping among patients with a diagnosis of AL amyloidosis referred to a tertiary referral center for HDM/SCT. Methods: Sequential patients with confirmed amyloidosis, age ≥ 18 years who underwent HDM/SCT between 2001 and 2014 at the Fred Hutchinson Cancer Research Center and University of Washington Medical Center were eligible. Presence of a Congo red-positive biopsy for each patient referred for transplant was confirmed and the pathology reports and medical records were reviewed to determine if subtyping was performed, and which modality was used. Results: Fifty-one patients with AL amyloidosis were referred for transplant; of these, 45 proceeded with HDM/SCT. The organ systems most commonly involved were renal in 34/51, and gastrointestinal in 5/51. Of the biopsies, subtyping was performed in 35 (68.6%), and no subtyping was performed in 16 patients (31.3%). Immunofluorescence was the most common modality used for subtyping in 33 biopsies (94.2%) and laser capture/mass spectrometry (LC/MS) was used in 2 patients (5.7%). All patients had evidence of a clonal plasma cell dyscrasia by bone marrow biopsy and peripheral blood testing. Of the patients without subtyping, 8 (50%) were diagnosed before 2008. Discussion: Misdiagnosis of amyloidosis due to a lack of appropriate subtyping is a well-described and ongoing problem for patients with amyloidosis. These data suggest that definitive subtyping is still not routinely performed in the evaluation of amyloidosis. At our center, efforts to standardize the evaluation of Congo-red positive biopsies using definitive typing are underway. Disclosures Gopal: Seattle Genetics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3348-3348
Author(s):  
Hiroyuki Hata ◽  
Masayoshi Tasaki ◽  
Konen Obayashi ◽  
Taro Yamashita ◽  
Yukio Ando ◽  
...  

Abstract [Introduction] Diagnosis of AL amyloidosis is dependent on the proof of light chains in amyloid lesions. However, immunostaining does not always successfully prove the presence of light chains in lesions in AL amylidosis patients. Here we report that the constant region of immunoglobulin lambda light chain (IGLC2) is seen in amyloid lesions where no positive signals are found with regular immunostaining. [Materials and Methods] Amyloid samples were stained with anti-human lambda light chain antibody (DAKO PO-0130) and analyzed with mass-spectrometry combining laser micro-dissection. Bone marrow samples were obtained from patients with amyloidosis, who gave written informed consent, and were subjected to plasma cell purification using CD138-immunomagnetic beads. Expression of immunoglobulin light chain mRNA was examined with RT-PCR. Anti-human IGLL5 antibody, capable of detecting immunoglobulin light chain constant region 2 (IGLC2) in paraffin embedded samples, was utilized. [Results and Discussion] We performed immunostaining for immunoglobulin light chains with 18 samples and found that six and eight cases were positive for kappa and lambda light chains, respectively, whereas light chains were not detected in remaining four cases (immunostaining-negative amyloidosis; INA). However, interestingly, mass spectrometry analysis revealed the presence of IGLC2 in all of the INA cases. RT-PCR analysis revealed the presence of IGLC2 mRNA in plasma cells from such INA cases. Surprisingly, amyloid lesions in all of the INA cases were positively stained with anti-IGLL5 antibody, whereas no staining was found in other samples positively stained with DAKO PO-0130. These observations suggest that the deposition of IGLC2 may cause AL amyloidosis, which otherwise could not be diagnosed with regular immunostaining. Although high dose chemotherapy produced hematological remission, half of such cases died within one year, suggesting irreversible and life-threatening amyloid fibril depositions in critical organs in IGLC2-related cases. We further examined additional twelve cases with AL amyloidosis to determine the incidence of IGLC2-related amyloidosis by immunostaining. With regular immunostaining, kappa and lambda chain were found in three and five cases, respectively. Interestingly, the remaining four cases were negative with regular immunostaining but positive with anti-IGLL5 antibody. Taken these observations together, eight IGLC2-related amyloidosis cases and thirteen lambda type amyloidosis were identified. Thus, the incidence of IGLC2-related amyloidosis should be approximately 38% (8/21) among lambda type AL amyloidosis. We conclude that diagnosis of IGLC2-related AL amyloidosis was possible only with the use of anti-IGLL5 antibody, but not with regular immunostaining. Given the relatively high incidence and often poor prognosis of IGLC2-related amyloidosis, it is important that this clinical entity is recognized to potentially improve outcomes of treatments. Analysis of mechanisms regulating amyloid formation with IGLC2 peptides is currently underway. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 143 (4) ◽  
pp. 373-380
Author(s):  
Layla Van Doren ◽  
Suzanne Lentzsch

Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare, life-threatening disease characterized by the deposition of misfolded proteins in vital organs such as the heart, the lungs, the kidneys, the peripheral nervous system, and the gastrointestinal tract. This causes a direct toxic effect, eventually leading to organ failure. The underlying B-cell lymphoproliferative disorder is almost always a clonal plasma cell disorder, most often a small plasma cell clone of <10%. Current therapy is directed toward elimination of the plasma cell clone with the goal of preventing further organ damage and reversal of the existing organ damage. Autologous stem cell transplantation has been shown to be a very effective treatment in patients with AL amyloidosis, although it cannot be widely applied as patients are often frail at presentation, making them ineligible for transplantation. Treatment with cyclophosphamide, bortezomib, and dexamethasone has emerged as the standard of care for the treatment of AL amyloidosis. Novel anti-plasma cell therapies, such as second generation proteasome inhibitors, immunomodulators, monoclonal antibodies targeting a surface protein on the plasma cell (daratumumab, elotuzumab), and the small molecular inhibitor venetoclax, have continued to emerge and are being evaluated in combination with the standard of care. However, there is still a need for therapies that directly target the amyloid fibrils and reverse organ damage. In this review, we will discuss current and emerging nonchemotherapy treatments of AL amyloidosis, including antifibril directed therapies under current investigation.


Author(s):  
Hermine Agis ◽  
Maria T. Krauth

SummaryImmunoglobulin light chain (AL) amyloidosis is a rare and underdiagnosed life-threatening systemic disease, primarily caused by insoluble depositions of misfolded monoclonal light chains. The monoclonal light chain paraprotein originates from a small clonal B‑cell or a clonal plasma cell population. If left undetected the paraprotein can induce a number of complications based on organ damage. The most dangerous and life-threatening organ dysfunction emerges from cardiac involvement. Thus, patients overall survival depends on early detection. Establishing the correct diagnosis and clear characterization of the amyloid-forming protein, staging, risk assessment and treatment are crucial and depend on a highly experienced interdisciplinary, multiprofessional team.


2020 ◽  
Vol 07 (04) ◽  
pp. 15-19
Author(s):  
Sanjay Kumar ◽  

Fifty-eight-year-old male admitted for evaluation of nephrotic syndrome and chronic diarrhoea was detected to have Immunoglobulin light chain amyloidosis (AL Amyloidosis) which was congo red inconclusive from renal biopsy. Bone marrow biopsy showed monoclonal plasma cells of 40% and light chain assay showed predominance of immunoglobulin lambda light chain. The diagnosis was neither fitting into the current diagnostic criteria for light chain Monoclonal Gammopathy of Renal Significance (MGRS) nor light chain myeloma. Literature is scarce regarding patients with AL amyloidosis having underlying clonal expansion not meeting the criteria of light chain myeloma or light chain MGRS.


Sign in / Sign up

Export Citation Format

Share Document