Nonchemotherapy Treatment of Immunoglobulin Light Chain Amyloidosis

2020 ◽  
Vol 143 (4) ◽  
pp. 373-380
Author(s):  
Layla Van Doren ◽  
Suzanne Lentzsch

Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare, life-threatening disease characterized by the deposition of misfolded proteins in vital organs such as the heart, the lungs, the kidneys, the peripheral nervous system, and the gastrointestinal tract. This causes a direct toxic effect, eventually leading to organ failure. The underlying B-cell lymphoproliferative disorder is almost always a clonal plasma cell disorder, most often a small plasma cell clone of <10%. Current therapy is directed toward elimination of the plasma cell clone with the goal of preventing further organ damage and reversal of the existing organ damage. Autologous stem cell transplantation has been shown to be a very effective treatment in patients with AL amyloidosis, although it cannot be widely applied as patients are often frail at presentation, making them ineligible for transplantation. Treatment with cyclophosphamide, bortezomib, and dexamethasone has emerged as the standard of care for the treatment of AL amyloidosis. Novel anti-plasma cell therapies, such as second generation proteasome inhibitors, immunomodulators, monoclonal antibodies targeting a surface protein on the plasma cell (daratumumab, elotuzumab), and the small molecular inhibitor venetoclax, have continued to emerge and are being evaluated in combination with the standard of care. However, there is still a need for therapies that directly target the amyloid fibrils and reverse organ damage. In this review, we will discuss current and emerging nonchemotherapy treatments of AL amyloidosis, including antifibril directed therapies under current investigation.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linchun Xu ◽  
Yongzhong Su

AbstractImmunoglobulin light chain amyloidosis (AL) is an indolent plasma cell disorder characterized by free immunoglobulin light chain (FLC) misfolding and amyloid fibril deposition. The cytogenetic pattern of AL shows profound similarity with that of other plasma cell disorders but harbors distinct features. AL can be classified into two primary subtypes: non-hyperdiploidy and hyperdiploidy. Non-hyperdiploidy usually involves immunoglobulin heavy chain translocations, and t(11;14) is the hallmark of this disease. T(11;14) is associated with low plasma cell count but high FLC level and displays distinct response outcomes to different treatment modalities. Hyperdiploidy is associated with plasmacytosis and subclone formation, and it generally confers a neutral or inferior prognostic outcome. Other chromosome abnormalities and driver gene mutations are considered as secondary cytogenetic aberrations that occur during disease evolution. These genetic aberrations contribute to the proliferation of plasma cells, which secrete excess FLC for amyloid deposition. Other genetic factors, such as specific usage of immunoglobulin light chain germline genes and light chain somatic mutations, also play an essential role in amyloid fibril deposition in AL. This paper will propose a framework of AL classification based on genetic aberrations and discuss the amyloid formation of AL from a genetic aspect.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 545
Author(s):  
Giovanni Palladini ◽  
Paolo Milani ◽  
Fabio Malavasi ◽  
Giampaolo Merlini

Systemic light-chain (AL) amyloidosis is caused by a small B cell, most commonly a plasma cell (PC), clone that produces toxic light chains (LC) that cause organ dysfunction and deposits in tissues. Due to the production of amyloidogenic, misfolded LC, AL PCs display peculiar biologic features. The small, indolent plasma cell clone is an ideal target for anti-CD38 immunotherapy. A recent phase III randomized study showed that in newly diagnosed patients, the addition of daratumumab to the standard of care increased the rate and depth of the hematologic response and granted more frequent organ responses. In the relapsed/refractory setting, daratumumab alone or as part of combination regimens gave very promising results. It is likely that daratumumab-based regimens will become new standards of care in AL amyloidosis. Another anti-CD38 monoclonal antibody, isatuximab, is at an earlier stage of development as a treatment for AL amyloidosis. The ability to target CD38 on the amyloid PC offers new powerful tools to treat AL amyloidosis. Future studies should define the preferable agents to combine with daratumumab upfront and in the rescue setting and assess the role of maintenance. In this review, we summarize the rationale for using anti-CD38 antibodies in the treatment of AL amyloidosis.


2021 ◽  
Vol 12 ◽  
pp. 204062072110583
Author(s):  
Foteini Theodorakakou ◽  
Meletios A. Dimopoulos ◽  
Efstathios Kastritis

Primary systemic immunoglobulin light chain (AL) amyloidosis is caused by a plasma cell clone of, usually low, malignant potential that expresses CD38 molecules on their surface. Treatment of AL amyloidosis is based on the elimination of the plasma cell clone. The combination of cyclophosphamide–bortezomib–dexamethasone (CyBorD) is the most widely used and is considered a standard of care; however, complete hematologic response rates and organ response rates remain unsatisfactory. Daratumumab, an anti-CD38 monoclonal antibody, has demonstrated encouraging results, with rapid and deep responses, in patients with relapsed or refractory AL amyloidosis as monotherapy with a favorable toxicity profile. The large phase-III, randomized, ANDROMEDA study evaluated the addition of daratumumab to CyBorD in previously untreated patients with AL amyloidosis and demonstrated that addition of daratumumab can substantially improve hematologic complete response rates, survival free from major organ deterioration or hematologic progression, and organ responses. In this review, we discuss the role of daratumumab in the treatment of AL amyloidosis, its mechanism of action, and the results of ANDROMEDA study that led to the first approved therapy for AL amyloidosis.


2020 ◽  
Vol 143 (5) ◽  
pp. 500-503 ◽  
Author(s):  
Charlotte Gran ◽  
Johanna Borg Bruchfeld ◽  
Fredrik Ellin ◽  
Hareth Nahi

Immunoglobulin light-chain amyloidosis (AL) is a disease with limited treatment options due to the frailty of patients caused by organ damage. Since the clonal plasma cells often contain the cytogenetic aberration t(11;14), the Bcl-2 inhibitor venetoclax is suggested to have a role in the treatment of AL. Here, we report of a heart-transplanted patient, refractory to multiple therapies, reaching a rapid complete response with single-agent venetoclax.


Author(s):  
Hermine Agis ◽  
Maria T. Krauth

SummaryImmunoglobulin light chain (AL) amyloidosis is a rare and underdiagnosed life-threatening systemic disease, primarily caused by insoluble depositions of misfolded monoclonal light chains. The monoclonal light chain paraprotein originates from a small clonal B‑cell or a clonal plasma cell population. If left undetected the paraprotein can induce a number of complications based on organ damage. The most dangerous and life-threatening organ dysfunction emerges from cardiac involvement. Thus, patients overall survival depends on early detection. Establishing the correct diagnosis and clear characterization of the amyloid-forming protein, staging, risk assessment and treatment are crucial and depend on a highly experienced interdisciplinary, multiprofessional team.


2020 ◽  
Vol 07 (04) ◽  
pp. 15-19
Author(s):  
Sanjay Kumar ◽  

Fifty-eight-year-old male admitted for evaluation of nephrotic syndrome and chronic diarrhoea was detected to have Immunoglobulin light chain amyloidosis (AL Amyloidosis) which was congo red inconclusive from renal biopsy. Bone marrow biopsy showed monoclonal plasma cells of 40% and light chain assay showed predominance of immunoglobulin lambda light chain. The diagnosis was neither fitting into the current diagnostic criteria for light chain Monoclonal Gammopathy of Renal Significance (MGRS) nor light chain myeloma. Literature is scarce regarding patients with AL amyloidosis having underlying clonal expansion not meeting the criteria of light chain myeloma or light chain MGRS.


2018 ◽  
pp. bcr-2018-226331 ◽  
Author(s):  
Juan Gonzalez ◽  
Ahsan Wahab ◽  
Kavitha Kesari

Dysphagia is an uncommon presentation of systemic immunoglobulin light-chain (AL) amyloidosis with multiple myeloma (MM). Gastrointestinal (GI) involvement usually manifests with altered motility, malabsorption or bleeding. Furthermore, patients identified with GI amyloidosis, without previous diagnosis of a plasma cell disorder, are extremely rare. We report an elderly woman who presented with acute on chronic cardiac dysfunction, sick sinus syndrome and acute renal failure. While admitted, she developed intermittent dysphagia to both solids and liquids. Oesophagogastroduodenoscopy showed ulcerations of oesophagus and duodenum. Biopsies revealed focal amyloid deposition, stained with Congo red. Renal biopsy revealed amyloid deposition in renal arterioles. She underwent a bone marrow biopsy confirming MM, represented by more than 15% plasma cell population. She was started on treatment for heart failure, induction chemotherapy for MM and percutaneous gastrostomy tube for feeding. However, she continued to deteriorate, eventually opting for hospice, and ultimately died 2 days after discharge from hospital.


Sign in / Sign up

Export Citation Format

Share Document