Role of retinal pigment epithelium in age-related macular disease: a systematic review

2020 ◽  
pp. bjophthalmol-2020-317447
Author(s):  
Alan Bird

Age-related macular disease (AMD) is a major cause of blindness and there is little treatment currently available by which the progress of the basic disorder can be modulated. Histological and clinical studies show that the major tissues involved are the outer retina, retinal pigment epithelium, Bruch’s membrane and choroid. Because of a wide variation of phenotype from one case to another, it has been suggested that accurate phenotyping would be necessary for assessment of the effectiveness of treatment that is tissue-directed. However, based on findings from the study of human donor material and animal models of disease and of cell culture, it is concluded that retinal pigment epithelial dysfunction plays a central role in the disease process in most, if not all, cases of early AMD. The metabolism of phagosomal material, particularly lipids, and energy generation are interdependent, and dysfunction of both appears to be important in the genesis of disease. Evidence exists to suggest that both can be modulated therapeutically. These metabolic functions are amenable to further investigation in both the normal state and in disease. Once fully characterised, it is likely that treatment could be directed towards a limited number of functions in single tissue, thus simplifying treatment strategies.

Author(s):  
Nilsa La Cunza ◽  
Li Xuan Tan ◽  
Gurugirijha Rathnasamy ◽  
Thushara Thamban ◽  
Colin J. Germer ◽  
...  

AbstractThe retinal pigment epithelium (RPE) is the site of initial damage leading to photoreceptor degeneration and vision loss in age-related macular degeneration (AMD). Genetic and histopathological studies implicate cholesterol dysregulation in AMD; yet mechanisms linking cholesterol to RPE injury and drusen formation remain poorly understood. Especially enigmatic are allelic variants of the cholesterol transporter APOE, major risk modifiers in Alzheimer’s disease that show reversed risk associations with AMD. Here, we investigated how ApoE isoforms modulate RPE health using live-cell imaging of primary RPE cultures and high-resolution imaging of human donor tissue. We show that the AMD-protective ApoE4 efficiently transports cholesterol and safeguards RPE homeostasis despite cellular stress. In contrast, ApoE2-expressing RPE accumulate cholesterol, which promotes autophagic deficits and complement-mediated mitochondrial fragmentation. Redox-related order-disorder phase transitions in ApoE2 drive the formation of intracellular biomolecular condensates as potential drusen precursors. Drugs that restore mitochondrial function limit condensate formation in ApoE2-RPE. Autophagic and mitochondrial defects correlate with intracellular ApoE aggregates in AMD donor RPE. Our study elucidates how AMD risk variants act as tipping points to divert the RPE from normal aging towards AMD by disrupting critical metabolic functions, and identifies mitochondrial stress-mediated aberrant phase transitions as a novel mechanism of drusen biogenesis.


2021 ◽  
Vol 22 (22) ◽  
pp. 12298
Author(s):  
Jongmin Kim ◽  
Yeo Jin Lee ◽  
Jae Yon Won

The retinal pigment epithelium (RPE), situated upon Bruch’s membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258803
Author(s):  
Karen R. Armbrust ◽  
Pabalu P. Karunadharma ◽  
Marcia R. Terluk ◽  
Rebecca J. Kapphahn ◽  
Timothy W. Olsen ◽  
...  

Purpose To determine whether age-related macular degeneration (AMD) severity or the frequency of retinal pigment epithelium mitochondrial DNA lesions differ in human donor eyes that have undergone cataract surgery compared to phakic eyes. Methods Eyes from human donors aged ≥ 55 years were obtained from the Minnesota Lions Eye Bank. Cataract surgery status was obtained from history provided to Eye Bank personnel by family members at the time of tissue procurement. Donor eyes were graded for AMD severity using the Minnesota Grading System. Quantitative PCR was performed on DNA isolated from macular punches of retinal pigment epithelium to quantitate the frequency of mitochondrial DNA lesions in the donor tissue. Univariable and multivariable analyses were performed to evaluate for associations between (1) cataract surgery and AMD severity and (2) cataract surgery and mitochondrial DNA lesion frequency. Results A total of 157 subjects qualified for study inclusion. Multivariable analysis with age, sex, smoking status, and cataract surgery status showed that only age was associated with AMD grade. Multivariable analysis with age, sex, smoking status, and cataract surgery status showed that none of these factors were associated with retinal pigment epithelium mitochondrial DNA lesion frequency. Conclusions In this study of human donor eyes, neither retinal pigment epithelium mitochondrial DNA damage nor the stage of AMD severity are independently associated with cataract surgery after adjusting for other AMD risk factors. These new pathologic and molecular findings provide evidence against a relationship between cataract surgery and AMD progression and support the idea that cataract surgery is safe in the setting of AMD.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Peeraporn Varinthra ◽  
Shun-Ping Huang ◽  
Supin Chompoopong ◽  
Zhi-Hong Wen ◽  
Ingrid Y. Liu

Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


Sign in / Sign up

Export Citation Format

Share Document