scholarly journals Predictive modeling of COVID-19 case growth highlights evolving racial and ethnic risk factors in Tennessee and Georgia

2021 ◽  
Vol 28 (1) ◽  
pp. e100349
Author(s):  
Jamieson D Gray ◽  
Coleman R Harris ◽  
Lukasz S Wylezinski ◽  
Charles F Spurlock, III

IntroductionThe SARS-CoV-2 (COVID-19) pandemic has exposed the need to understand the risk drivers that contribute to uneven morbidity and mortality in US communities. Addressing the community-specific social determinants of health (SDOH) that correlate with spread of SARS-CoV-2 provides an opportunity for targeted public health intervention to promote greater resilience to viral respiratory infections.MethodsOur work combined publicly available COVID-19 statistics with county-level SDOH information. Machine learning models were trained to predict COVID-19 case growth and understand the social, physical and environmental risk factors associated with higher rates of SARS-CoV-2 infection in Tennessee and Georgia counties. Model accuracy was assessed comparing predicted case counts to actual positive case counts in each county.ResultsThe predictive models achieved a mean R2 of 0.998 in both states with accuracy above 90% for all time points examined. Using these models, we tracked the importance of SDOH data features over time to uncover the specific racial demographic characteristics strongly associated with COVID-19 incidence in Tennessee and Georgia counties. Our results point to dynamic racial trends in both states over time and varying, localized patterns of risk among counties within the same state. For example, we find that African American and Asian racial demographics present comparable, and contrasting, patterns of risk depending on locality.ConclusionThe dichotomy of demographic trends presented here emphasizes the importance of understanding the unique factors that influence COVID-19 incidence. Identifying these specific risk factors tied to COVID-19 case growth can help stakeholders target regional interventions to mitigate the burden of future outbreaks.

2020 ◽  
Author(s):  
Jessie Zurita-Cruz ◽  
Alejandro Gutierrez-Gonzalez ◽  
Leticia Manuel-Apolinar ◽  
José Esteban Fernández-Gárate ◽  
María Luisa Arellano-Flores ◽  
...  

Abstract Background: Viral respiratory infections (VRIs) are a frequent cause of hospitalization in children under 24 months of age. A history of prematurity or heart disease may be a risk factor for complications in patients hospitalized for VRI. The objective was to describe epidemiological data for children hospitalized for IRV and aged 1 to 24 months and to identify risk factors for the presence of in-hospital complications and mortality over a period of 5 years. Methods : This was a cross-sectional study. Patients registered with VRI codes B974, J12, J120-J129X, J168, J17, J171, J178, J20, J203-J209, J21, J210, J211, J218, J219 (based on International Classification of Diseases [ICD-10]) from 2013 to 2017 were included. Three subanalyses were performed to compare (1) patients with pathological history (prematurity, bronchopulmonary dysplasia [BPD] and congenital heart disease [CHD]), (2) diagnoses (pneumonia, acute bronchitis, and acute bronchiolitis), and (3) admission to the pediatric intensive care unit. Days of hospital stay, in-hospital complications, invasive medical procedure and mortality were analyzed. Statistical analysis : VRI hospitalization prevalence was described. For comparison between groups, Student's t-test, ANOVA and the Chi2 test were applied. To identify factors related to days of hospital stay, in-hospital complications and mortality, a linear and logistic regression model was performed. Results: A total of 66,304 hospitalizations were reported. The average age was 14.7 weeks; hospitalization events were higher in winter (39%), followed by autumn (27.3%). A total of 371 (0.56%) patients died. A total of 7,068 (10.6%) hospitalized patients with pathological histories were identified. The presence of BPD (coefficient = 1.6), CHD (coefficient = 1.2), diagnosis of pneumonia (coefficient = 1.2), in-hospital complications (coefficient = 2.1) and invasive medical procedures (coefficient = 15.7) were the most common factors that increased the length of hospital stay. Risk factors for in-hospital complications and mortality were invasive medical procedure (OR = 3.3 & 11.7), BPD (OR=1.8 & 1.6), CHD (OR = 4.6 & 3.4) and diagnosis of pneumonia (OR= 1.8 & 4.2). Conclusions: Risk factors for morbidity and mortality in patients hospitalized for VRIs are BPD and CHD, diagnosis of pneumonia and invasive medical procedure.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jessie N. Zurita-Cruz ◽  
Alejandro Gutierrez-Gonzalez ◽  
Leticia Manuel-Apolinar ◽  
José Esteban Fernández-Gárate ◽  
María Luisa Arellano-Flores ◽  
...  

Abstract Background Viral respiratory infections (VRIs) are a frequent cause of hospitalization in children under 24 months of age. A history of prematurity or heart disease may be a risk factor for complications in patients hospitalized for VRI. The objective was to describe epidemiological data for children hospitalized for IRV and aged 1 to 24 months and to identify risk factors for the presence of in-hospital complications and mortality over a period of 5 years. Methods This was a cross-sectional study. Patients registered with VRI codes B974, J12, J120-J129X, J168, J17, J171, J178, J20, J203-J209, J21, J210, J211, J218, J219 (based on International Classification of Diseases [ICD-10]) from 2013 to 2017 were included. Three subanalyses were performed to compare [1] patients with pathological history (prematurity, bronchopulmonary dysplasia [BPD] and congenital heart disease [CHD]), [2] diagnoses (pneumonia, acute bronchitis, and acute bronchiolitis), and [3] admission to the pediatric intensive care unit. Days of hospital stay, in-hospital complications, invasive medical procedure and mortality were analyzed. Statistical analysis: VRI hospitalization prevalence was described. For comparison between groups, Student’s t-test, ANOVA and the Chi2 test were applied. To identify factors related to days of hospital stay, in-hospital complications and mortality, a linear and logistic regression model was performed. Results A total of 66,304 hospitalizations were reported. The average age was 14.7 weeks; hospitalization events were higher in winter (39%), followed by autumn (27.3%). A total of 371 (0.56%) patients died. A total of 7068 (10.6%) hospitalized patients with pathological histories were identified. The presence of BPD (coefficient = 1.6), CHD (coefficient = 1.2), diagnosis of pneumonia (coefficient = 1.2), in-hospital complications (coefficient = 2.1) and invasive medical procedures (coefficient = 15.7) were the most common factors that increased the length of hospital stay. Risk factors for in-hospital complications and mortality were invasive medical procedure (OR = 3.3 & 11.7), BPD (OR = 1.8 & 1.6), CHD (OR = 4.6 & 3.4) and diagnosis of pneumonia (OR = 1.8 & 4.2). Conclusions Risk factors for morbidity and mortality in patients hospitalized for VRIs are BPD and CHD, diagnosis of pneumonia and invasive medical procedure.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1006
Author(s):  
Karyne Rangel ◽  
Thiago Pavoni Gomes Chagas ◽  
Salvatore Giovanni De-Simone

The COVID-19 pandemic has generated an overuse of antimicrobials in critically ill patients. Acinetobacter baumannii frequently causes nosocomial infections, particularly in intensive care units (ICUs), where the incidence has increased over time. Since the WHO declared the COVID-19 pandemic on 12 March 2020, the disease has spread rapidly, and many of the patients infected with SARS-CoV-2 needed to be admitted to the ICU. Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity and mortality. However, we cannot neglect the increased incidence of antimicrobial resistance, which may be attributed to the excess use of antimicrobial agents during the COVID-19 pandemic. Patients with COVID-19 could be vulnerable to other infections owing to multiple comorbidities with severe COVID-19, prolonged hospitalization, and SARS-CoV-2-associated immune dysfunction. These patients have acquired secondary bacterial infections or superinfections, mainly bacteremia and urinary tract infections. This review will summarize the prevalence of A. baumannii coinfection and secondary infection in patients with COVID-19.


2020 ◽  
Author(s):  
Jessie Zurita-Cruz ◽  
Alejandro Gutierrez-Gonzalez ◽  
Leticia Manuel-Apolinar ◽  
José Esteban Fernández-Gárate ◽  
María Luisa Arellano-Flores ◽  
...  

Abstract Background: Viral respiratory infections (VRIs) are a frequent cause of hospitalization in children under 24 months of age. A history of prematurity or heart disease may be a risk factor for complications in patients hospitalized for VRI. The objective was to describe epidemiological data for children hospitalized for IRV and aged 1 to 24 months and to identify risk factors for the presence of in-hospital complications and mortality over a period of 5 years.Methods: This was a cross-sectional study. Patients registered with VRI codes B974, J12, J120-J129X, J168, J17, J171, J178, J20, J203-J209, J21, J210, J211, J218, J219 (based on International Classification of Diseases [ICD-10]) from 2013 to 2017 were included. Three subanalyses were performed to compare (1) patients with pathological history (prematurity, bronchopulmonary dysplasia [BPD] and congenital heart disease [CHD]), (2) diagnoses (pneumonia, acute bronchitis, and acute bronchiolitis), and (3) admission to the pediatric intensive care unit. Days of hospital stay, in-hospital complications, invasive medical procedure and mortality were analyzed. Statistical analysis: VRI hospitalization prevalence was described. For comparison between groups, Student's t-test, ANOVA and the Chi2 test were applied. To identify factors related to days of hospital stay, in-hospital complications and mortality, a linear and logistic regression model was performed.Results: A total of 66,304 hospitalizations were reported. The average age was 14.7 weeks; hospitalization events were higher in winter (39%), followed by autumn (27.3%). A total of 371 (0.56%) patients died. A total of 7,068 (10.6%) hospitalized patients with pathological histories were identified. The presence of BPD (coefficient = 1.6), CHD (coefficient = 1.2), diagnosis of pneumonia (coefficient = 1.2), in-hospital complications (coefficient = 2.1) and invasive medical procedures (coefficient = 15.7) were the most common factors that increased the length of hospital stay. Risk factors for in-hospital complications and mortality were invasive medical procedure (OR = 3.3 & 11.7), BPD (OR=1.8 & 1.6), CHD (OR = 4.6 & 3.4) and diagnosis of pneumonia (OR= 1.8 & 4.2).Conclusions: Risk factors for morbidity and mortality in patients hospitalized for VRIs are BPD and CHD, diagnosis of pneumonia and invasive medical procedure.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


Author(s):  
Sinha Pranay ◽  
Katherine Reifler ◽  
Michael Rossi ◽  
Manish Sagar

Abstract Detection of diverse respiratory viruses in Boston was around 80% lower after practices were instituted to limit COVID-19 spread compared to the same time period during the previous five years. Continuing the strategies that lower COVID-19 dissemination may be useful in decreasing the incidence of other viral respiratory infections.


Sign in / Sign up

Export Citation Format

Share Document