A Survey of Traffic Passing Offshore Installations in the North Sea

1984 ◽  
Vol 37 (2) ◽  
pp. 251-263
Author(s):  
M. A. F. Pyman ◽  
P. R. Lyon ◽  
G. Rowe May

Since drilling for oil and gas began in the North Sea in the mid 1960s, the possibility of merchant ships colliding with offshore platforms or rigs, has been of concern to both government and operators. There are nearly 100 fixed and floating installations in the UK sector of the North Sea; they vary in size, location and type of construction, but in all cases, collision would pose serious risks to life, pollution and loss of production. Some platforms are near busy shipping lanes and some have several hundred personnel on them at certain times.

2020 ◽  
Author(s):  
Shona Wilde ◽  
Ruth Purvis ◽  
James Lee ◽  
James Hopkins ◽  
Alastair Lewis ◽  
...  

<p>The North Sea is home to around 200 offshore platforms that extract oil and natural gas from beneath the sea. Total offshore emissions (carbon dioxide (CO<sub>2</sub>), nitrogen oxides (NO + NO<sub>2</sub> = NO<sub>x</sub>), nitrous oxide (N<sub>2</sub>O), sulphur dioxide (SO<sub>2</sub>), carbon monoxide (CO), methane (CH<sub>4</sub>) and total VOCs) from upstream oil and gas production in the UK increased by 7 % from 2016 to 2017. Therefore, the accurate measurement and analysis of leakage is critical for global emissions inventories and in terms of mitigating climate change. A recent study (Riddick et al., 2019) showed that on average methane leakage during normal operations is more than double what is reported to the UK National Emissions Inventory (NAEI) for each installation. Here we provide a top-down emissions estimation methodology from which emissions of CH<sub>4</sub> and up to 30 individual volatile organic compounds (VOCs) can be estimated for point-source platforms. We apply a direct integration technique, and use VOC measurements obtained within downwind plumes as a tool for source identification. A total of 16 research flights were conducted as part of a joint project between the UK National Centre for Atmospheric Science (NCAS), BEIS, the UK Offshore Petroleum Regulator for Environment and Decommissioning (OPRED) and Ricardo Energy & Environment to characterise emissions from platforms in the North Sea. The hydrocarbon to ethane enhancement ratio within downwind plumes, measured under well-mixed boundary layer conditions, was used to scale a 1 Hz ethane measurement from the aircraft to other hydrocarbons collected using whole air samplers and measured using GC-FID. This allowed individual VOC emission rates to be calculated and compared to existing inventories. This work highlights how a top down technique can be used to quantify emissions and also provide insight into specific emission sources, in contrast to existing methods which often fail to achieve both simultaneously.</p>


BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037558
Author(s):  
Anne Waje-Andreassen ◽  
Øyvind Østerås ◽  
Guttorm Brattebø

ObjectivesFew studies have described evacuations due to medical emergencies from the offshore installations in the North Sea, though efficient medical service is essential for the industrial activities in this area. The major oil- and gas-producing companies’ search and rescue (SAR) service is responsible for medical evacuations. Using a prospective approach, we describe the characteristics of patients evacuated by SAR.Design and settingA prospective observational study of the offshore primary care provided by SAR in the North Sea.MethodsPatients were identified by linking flight information from air transport services in 2015/2016 and the company’s medical record system. Standardised forms filled out by SAR nurses during the evacuation were also analysed. In-hospital information was obtained retrospectively from Haukeland University Hospital’s information system.ResultsA total of 381 persons (88% men) were evacuated during the study period. Twenty-seven per cent of missions were due to chest pain and 18% due to trauma. The mean age was 46.0 years. Severity scores were higher for cases due to medical conditions compared with trauma, but the scores were relatively low compared with onshore emergency missions. The busiest months were May, July and December. Weekends were the busiest days.ConclusionThree times as many evacuations from offshore installations are performed due to acute illness than trauma, and cardiac problems are the most common. Although most patients are not severely physiologically deranged, the study documents a need for competent SAR services 24 hours a day year-round. Training and certification should be tailored for the SAR service, as the offshore health service structure and geography differs from the structure onshore.


Author(s):  
P. Whomersley ◽  
G.B. Picken

Inspection videos of four offshore platforms in the central and northern North Sea were used to study the development of fouling communities on clamps and guides of oil export risers over an 11-y period (1989–2000). Results from multivariate analyses (multi-dimensional scaling and analysis of similarities) indicated that distinct assemblages developed in different geographical locations. These differences were mainly due to the protracted development of theMetridium senile(Cnidaria: Actinaria) zone on the northern sector platforms. The vertical zonation of fouling organisms was similar on all installations, although the water depth at platform locations varied from 80 to 169 m, indicating that fouling organisms display a wide bathymetric tolerance. This study has highlighted the value of long-term data present in operational inspection videos for the study of fouling communities.


2020 ◽  
Author(s):  
Florian Mauffrey ◽  
Tristan Cordier ◽  
Laure Apothéloz‐Perret‐Gentil ◽  
Kristina Cermakova ◽  
Thomas Merzi ◽  
...  

Author(s):  
Beatriz Alonso Castro ◽  
Terje Birkenes ◽  
Huib Oosterveld

Decommissioning is an emerging sector in the UK and Norway, accounting for 2% of total industry expenditure in 2010 increasing to 8% in 2017. In accordance with existing regulations in the North Sea (OSPAR), dumping, and leaving wholly or partly in place disused offshore installations within the maritime area is prohibited. Over the next eight years, 200 platforms are expected to be removed in the North Sea. There are a number of methods to remove offshore installations: Piece small, Reverse installation and Single lift. In the Single lift approach the jacket or the topside is removed in one piece, minimizing significantly the time offshore and therefore the safety and health incidents. But the Piece Small and Reverse Installation are the most common methods and are established and secure although are time consuming and labor intensive [1]. Several potential candidates for single lift technology at varying levels of technical readiness were considered in the past. The majority of the concepts remained on the drawing board, while some were awaiting project commitment. The only that was matured further than this is the Pioneering Spirit. Yme, its first commercial lift, gave this concept the “proven” status. The Yme MOPU, owned by Repsol, was a jack-up type platform standing on three steel legs of 3.5 m diameter. The dry weight of the MOPU was approximately 13,500 t. The Yme MOPU was a challenging unit to remove mainly for three reasons: The platform motions due to the lack of stiffness in the leg support, its position in contact with the caisson wellhead platform, and the fact that the legs could not be pre-cut before the operation. The method selected to remove the platform was Single lift, using the dynamically positioned platform installation and removal vessel Pioneering Spirit. The lifting arrangement consisted of 12 lift beams combined and connected in pairs to yokes. Five specifically designed yokes were installed. The yokes connect the TLS with the MOPU. The structural integrity of each interface was assessed with FE analysis. The Ballast system was used to provide additional clearance. Pioneering Spirit has a total of eighty-seven ballast water tanks, including four so called ‘Quick Drop Ballast Water Tanks’. The removal of the MOPU was performed successfully the 22nd August 2016, after two days work offshore.


1991 ◽  
Vol 14 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Stewart Brown

The petroliferous sedimentary basins of the UK Continental Shelf are remarkable for the diversity of their reservoir strata. Reservoir rocks in fields currently in production range in age from Devonian to earliest Eocene, but significant hydrocarbon discoveries have also been made in rocks as as young as the mid-Eocene. The reservoirs are predominantly siliciclastic rocks, with facies ranging from continental fluvial and aeolian, to marine gravity flow deposits from sub-wave base environments.In this paper stratigraphic context of the producing horizons in the UK Continental Shelf (UKCS), principally the North Sea, is reviewed, and the sedimentation of the reservoir strata placed in an outline geological history. The main producing horizons are described in summary. Matters of stratigraphic terminology and correlation both between fields and between basins are discussed.A lithostratigraphy for the UK southern North Sea was established by Rhys (1974), and for the central and northern North Sea by Deegan & Scull (1977). Although these schemes have proved to be fairly robust, in the last 13 years the acquisition of new data plus a proliferation of new terms not fully documented in the public domain, argue strongly for a comprehensive revision and rationalization which is beyond the scope of this paper. Attempts in the public domain to standardize nomenclature across international boundaries in the North Sea, pursued by Deegan & Scull (1977) for the UK and Norwegian sectors, have lapsed for the most part in subsequent years.Economic basement in the UK North Sea can be regarded at present


2020 ◽  
Vol 52 (1) ◽  
pp. 488-497 ◽  
Author(s):  
J. G. Gluyas ◽  
P. Arkley

AbstractThe abandoned Innes Field was within Block 30/24 on the western margin of the Central Trough in the UK sector of the North Sea. Hamilton Brothers Oil Company operated the licence, and Innes was the third commercially viable oil discovery in the block after Argyll and Duncan. It was discovered in 1983 with well 30/24-24. Three appraisal wells were drilled, one of which was successful. Oil occurs in the Early Permian Rotliegend Group sandstones sealed by Zechstein Group dolomites and Upper Jurassic shale.The discovery well and successful appraisal well were used for production. Export of light, gas-rich crude was via a 15 km pipeline to Argyll. Innes was produced using pressure decline. It was abandoned in 1992 having produced 5.8 MMbbl of oil and possibly 9.8 bcf of gas. Water cut was a few percent.Innes was re-examined between 2001 and 2003 by the Tuscan Energy/Acorn Oil and Gas partnership with a view to tying the field back to the newly redeveloped Argyll (Ardmore) Field but marginal economics and financial constraints for the two start-up companies prevented any further activity. Enquest currently owns the licence and the company has redeveloped Argyll/Ardmore, as Alma. There are no plans to redevelop Innes.


2021 ◽  
Author(s):  
Molly lliffe

Abstract The UK was the first major industrialised nation to commit to a Net Zero target by 2050, and Scotland has an even more ambitious target to reach Net Zero by 2045. To realise these targets, hydrogen will play a leading role in the decarbonisation of multiple sectors including industry, transport, heat and power. Offshore wind can be a core component of our future energy infrastructure, and the scale of its potential role in hydrogen production has recently drawn wider attention from policy makers, developers and potential users across a range of sectors. Hydrogen as a route to market for offshore wind therefore presents a transformative opportunity for the North Sea oil and gas sector and the associated UK supply chain. Existing skills and infrastructure in this region can be leveraged to achieve a leading position in this emerging clean fuel source. This opportunity is particularly relevant for sites in the North Sea which are further from shore with good wind resource, where power transmission costs and/or losses would be prohibitive. Additionally, hydrogen offers an interesting route to market for projects unable to obtain firm grid connection, for sites in regions with high grid charges, or where sufficient government revenue support for conventional power generation is not available for all good quality sites.


This Royal Society Discussion Meeting has examined the total environmental impact of a whole industry in a single geographical area. Land-based developments related to the exploitation of the North Sea oilfields and their social consequences have been substantial, although neither the worst fears nor the best hopes have been realized. An accommodation has been reached with the fishing industry in the affected area. Offshore platforms are a source of chronic pollution from production water, but in recent years there has been a marked increase in the use of oil-based drilling muds and it is estimated that 20 Mt per year of petroleum hydrocarbons are added to the sea in oil-contaminated drill cuttings. The effect of these additions has been studied in the laboratory, in mesocosms and in field surveys which, together, yield a consistent picture. Within a radius of a few hundred metres of a platform there is impoverishment of the benthic fauna. Close to the platform the production of anoxic conditions through smothering and the activity of sulphide-producing bacteria is probably more significant than the toxic effect of the oil-based muds. Outside this immediate zone of impact, the oil results in organic enrichment and enhanced populations of some of the fauna. The total area affected is, in the context of the North Sea, minuscule. There is no evidence that plankton is materially affected and the success of commercial fisheries dependent upon the plankton crop is more influenced by fishery practices than by any other factor. Seabird populations, about which there was formerly much concern, have not so far been affected by oil pollution in the North Sea. There is wide fluctuation in recruitment success, but populations of species thought most vulnerable to oil pollution are generally increasing. Although marine pollution research has yielded valuable insights into the responses of individuals, populations and communities to perturbation, natural as well as man-made, it is not likely that future problems associated with oil extraction from the sea will be as stimulating to fundamental research. Different problems relating to environmental pollution should now be addressed by marine scientists.


2019 ◽  
Vol 77 (3) ◽  
pp. 1157-1166 ◽  
Author(s):  
R Sühring ◽  
A Cousins ◽  
L Gregory ◽  
C Moran ◽  
A Papachlimitzou ◽  
...  

Abstract The North Sea is one of the most studied and exploited ecosystems worldwide. The multiple uses from industrial, transport, as well as recreational activities have required researchers, regulators, and legislators to understand and, where possible, to minimize any expected negative environmental impacts. As with any international sea, assessing the current pressures and management actions resulting from these activities is centred on several national and international legislative instruments. This variety of co-existing legislations makes development processes and regulatory assessments cumbersome and time consuming. Hence there is a need to integrate environmental risk assessment and management across sectors, ensuring smart, cost-effective data generation, as well as supporting and standardizing environmental practices. This paper provides an overview of the changing regulatory frameworks regarding offshore chemicals used in the oil and gas industry, and the process of chemical risk assessment conducted under the Offshore Chemical Notification Scheme (ONCS) in the UK. Our view of methodological, research, and regulatory needs and challenges that should be addressed to ensure an adequate and sustainable assessment of offshore chemical use in the North Sea is discussed. Furthermore, we discuss the issues faced regarding chemicals used in the UK oil and gas sector with respect to declining hydrocarbon production.


Sign in / Sign up

Export Citation Format

Share Document