The impact of Crohn's disease genes on healthy human gut microbiota: a pilot study

Gut ◽  
2013 ◽  
Vol 62 (6) ◽  
pp. 952.1-954 ◽  
Author(s):  
Christopher Quince ◽  
Elin E Lundin ◽  
Anna N Andreasson ◽  
Dario Greco ◽  
Joseph Rafter ◽  
...  
2020 ◽  
Vol 59 (8) ◽  
pp. 3347-3368
Author(s):  
J. R. Swann ◽  
M. Rajilic-Stojanovic ◽  
A. Salonen ◽  
O. Sakwinska ◽  
C. Gill ◽  
...  

AbstractWith the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota–host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods.


2017 ◽  
Vol 152 (5) ◽  
pp. S929
Author(s):  
Fabio Turco ◽  
Andromeda Linan Rico ◽  
Mahmoud Abdel-Rasoul ◽  
Alix Zuleta-Alarcon ◽  
Paolo Fadda ◽  
...  

PROTEOMICS ◽  
2015 ◽  
Vol 15 (20) ◽  
pp. 3474-3485 ◽  
Author(s):  
Alessandro Tanca ◽  
Antonio Palomba ◽  
Salvatore Pisanu ◽  
Maria Filippa Addis ◽  
Sergio Uzzau

2018 ◽  
Vol 50 ◽  
pp. 104-111 ◽  
Author(s):  
Alba Tamargo ◽  
Carolina Cueva ◽  
Laura Laguna ◽  
M.Victoria Moreno-Arribas ◽  
Loreto A. Muñoz

Gut ◽  
2014 ◽  
Vol 63 (Suppl 1) ◽  
pp. A159.2-A160 ◽  
Author(s):  
NA Kennedy ◽  
AW Walker ◽  
SH Berry ◽  
CA Lamb ◽  
S Lewis ◽  
...  

2015 ◽  
Vol 148 (4) ◽  
pp. S-718
Author(s):  
Nicholas A. Kennedy ◽  
Alan W. Walker ◽  
Susan H. Berry ◽  
Christopher A. Lamb ◽  
Sophie Lewis ◽  
...  

Author(s):  
Thomas Gurry ◽  
Le Thanh Tu Nguyen ◽  
Xiaoqian Yu ◽  
Eric J Alm

AbstractThe human gut microbiota is known for its highly heterogeneous composition across different individuals. However, relatively little is known about functional differences in its ability to ferment complex polysaccharides. Through ex vivo measurements from healthy human donors, we show that individuals vary markedly in their microbial metabolic phenotypes (MMPs), mirroring differences in their microbiota composition, and resulting in the production of different quantities and proportions of Short Chain Fatty Acids (SCFAs) from the same inputs. We also show that aspects of these MMPs can be predicted from composition using 16S rRNA sequencing. From experiments performed using the same dietary fibers in vivo, we demonstrate that an ingested bolus of fiber is almost entirely consumed by the microbiota upon passage. We leverage our ex vivo data to construct a model of SCFA production and absorption in vivo, and argue that inter-individual differences in quantities of absorbed SCFA are directly related to differences in production. Taken together, these data suggest that personalized dietary fiber supplementation based on an individual’s MMP is an attractive therapeutic strategy for treating diseases associated with SCFA production.


Author(s):  
Samuel Piquer-Esteban ◽  
Susana Ruiz-Ruiz ◽  
Vicente Arnau ◽  
Wladimiro Diaz ◽  
Andrés Moya

Sign in / Sign up

Export Citation Format

Share Document