627 The DLL3-targeted half-life extended bispecific T cell engager (HLE BiTE®) immune-oncology therapy AMG 757 has potent antitumor activity in neuroendocrine cancer

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1868-1868
Author(s):  
Tenzin Passang Fnu ◽  
Jianming Li ◽  
Sruthi Ravindranathan ◽  
Edmund K. Waller

Abstract Introduction: Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide with immunosuppressive effects on T cells. Inhibition of VIP receptor (VIP-R) signaling by VIPhyb, a first-generation VIP-R antagonist, not only enhances T-cell activation and proliferation in vitro but also improves T cell dependent anti-tumor response in mouse models of acute myeloid leukemia (AML) and T lymphoblastic leukemia (Li et al. 2016; Petersen, Li, and Waller 2017). The goal of the project is to develop more potent VIP-R antagonists that generate a significantly more robust anti-tumor response in mouse models of AML, when compared to VIPhyb and validate a screening method to test the efficacy of novel peptides in activating human T cells in vitro. In this study, we report, for the first time, the activity of novel VIP-R antagonists on the activation profile of human T cells. Methods: We utilized in-silico-based modeling to identify 10 novel VIP-R antagonists from a library of 300 peptide sequences predicted to have increased binding affinity to VIP receptors VPAC1 and VPAC2 when compared to VIP or VIPhyb (Table 1). The library was generated from peptide sequences that contain the six charged N-terminal residues of the neurotensin present in VIPhyb with two or more amino acid substitutions within the C-terminal amino acid sequence of VIP. The ability of these peptides was tested in vitro using T cells from multiple healthy human donors activated using anti-CD3 monoclonal antibody coated plates. Activation status was assessed by flow cytometry of CD69, OX40, PD1, Tim3 and Lag3 expression relative to control cultures without added peptides. Potency of the novel antagonists in vivo was tested in a mouse AML model, by treating C1498- bearing mice with subcutaneous administration of VIP, VIPhyb, scrambled peptide (SCRAM1) or the second-generation VIP-R antagonists (labeled as 'ANT') from day 6-12 after tumor implantation. Results: Inhibiting VIP-R signaling in human T cells using second-generation VIP-R antagonists ANT008, ANT308 and ANT195 showed approximately 1.5-to-2-fold increase in CD69, OX40, Tim3, Lag3 and OX40 expression in CD4+ T cells following 24-hour of drug exposure compared to control cultures (Figure 1A). A smaller effect of VIP-R antagonists on activation of CD8+ subsets was observed (Figure 1B). Among the peptides, ANT195 was superior to ANT008 and ANT308 which shows potency even at 1μM compared to 3μM for ANT008 and ANT308. However, significant increase in CD69 expression was observed in both CD4+ and CD8+ T cells in cultures treated with ANT308 (Figure 1 A&B, *p<0.05). Viability of the T cells was not affected by incubation with the queried peptides (Data not shown). These data corresponded to in vivo activity of the novel VIP-R antagonists such as ANT308 and ANT195 which rendered 40% of mice leukemia-free at day 60 compared to only 5% long-term survival with VIPhyb (Figure 2). Another candidate, ANT300, increased median survival time (MST) by up to 47 days compared to MST of 34 days with VIPhyb (Figure 2). Conclusions: Here, we report a simple and robust in vitro method to screen for immune activity potential of novel second-generation VIP-R antagonists using human T cells. Preliminary screen shows VIP-R antagonists augment activation of both CD4+ and CD8+ T cells. Our results indicate that ANT308 and ANT195 are more potent VIP-R antagonists with enhanced activity in vitro (human) and in vivo (mouse) than VIPhyb and ANT008, which demonstrate lower predicted binding affinities to VPAC1 and VPAC2. Our study supports the hypothesis that higher predicted binding affinity to VPAC1 and/or VPAC2 is associated with enhanced activity in stimulating human T cells and promoting anti-leukemia activity in mice. Further mechanistic studies on how inhibition of VIP-R signaling augments T cell activation and function are underway. These novel antagonists can lead to peptide-based immunotherapy for the treatment of various liquid cancers. Clinical development of this novel concept will require appropriate pre-clinical pharmacokinetic and toxicology studies. Figure 1 Figure 1. Disclosures Waller: Cambium Oncology: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Verastem Oncology: Consultancy, Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A592-A592
Author(s):  
Aude De Gassart ◽  
Patrick Brune ◽  
Maelle Mairesse ◽  
Sophie Agaugué ◽  
Ryan Swanson ◽  
...  

Backgroundγ9δ2 T-cells are attractive mediators of cancer immunotherapy due to their strong cytolytic and pro-inflammatory activities and the positive correlation between tumor infiltration and good prognosis [1,2]. ICT01, a novel anti-BTN3A mAb activating γ9δ2 T-cells, is being evaluated in a Phase 1/2a clinical study (NCT04243499)[3,4]. Previous studies have shown that IL-2 (Proleukin®) promotes γ9δ2 T-cells expansion following ICT01 stimulation, which may be clinically useful given that γ9δ2 T-cells are normally <5% of total T-cells [5]. However, the severe toxicity of IL-2 has limited its widespread use. NL-201 is a de novo alpha-independent IL-2/IL-15 agonist that preferentially stimulates CD8 T and NK cell proliferation at low concentrations, enabling a potentially wider therapeutic index than IL-2, and is being evaluated in a Phase 1 clinical study (NCT04659629)[6,7]. Here, we explore the potential of ICT01 and NL-201 to synergistically stimulate the activation and proliferation of γ9δ2 T-cells.MethodsFlow cytometry was used to assess IL-2R signaling (pSTAT5), and γ9δ2 T-cell activation and expansion after in vitro culture of huPBMCs with ICT01, NL201 or the combination. Tumor cell killing activity was monitored upon co-culture of huPBMCs with tumor cell lines (Incucyte). In vivo pharmacology was performed in NCG mice engrafted with 20x106 huPBMCs and treated with ICT01 (1 mg/kg IV)±NL-201 (1, 3 or 10 µg/kg IV). Immune cells were phenotyped by flow cytometry in blood and organs collected at sacrifice (Day 16).ResultsNL-201 is ~100X more potent than IL-2 in triggering IL-2R signaling in γ9δ2 T-cells, without preferential activity on Tregs. NL-201 plus ICT01 induces synergistic expansion of γ9δ2 T-cells, approaching ~50% of T-cells after 8 days versus ~10% with single agents. In addition, the combination of NL-201 and ICT01 promotes γ9δ2 T-cell effector memory differentiation, in contrast to IL-2, which induces primarily central memory phenotype. Importantly, NL-201 enhances ICT01-mediated killing of cancer cells by γ9δ2 T-cells.In mice, a dose-dependent expansion of peripheral γ9δ2 T-cells from ~1–2% at baseline to up to 40% of T-cells was observed in the ICT01+NL-201 combination groups. Consistently, γ9δ2 T-cell number and frequency increase in spleen and lungs of the ICT01+NL-201 treated animals as compared to controls. Expanded γ9δ2 T-cells in the combination groups display an effector memory phenotype, confirming our in vitro results.ConclusionsThese results demonstrate the ability of the ICT01+NL-201 combination to synergistically trigger γ9δ2 T-cell activation, expansion and anti-tumor activity and support clinical evaluation of this combination as a novel therapeutic approach for cancer patients.ReferencesGentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21, 938-945, doi:10.1038/nm.3909 (2015).Tosolini, M. et al. Assessment of tumor-infiltrating TCRVgamma9Vdelta2 gammadelta lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723, doi:10.1080/2162402X.2017.1284723 (2017).Gassart, A. d. et al. 687 Enhancement of anti-tumor immunity by ICT01: a novel g9d2 T cell-activating antibody targeting butyrophilin-3A (BTN3A). Journal for ImmunoTherapy of Cancer 8, A412-A413, doi:10.1136/jitc-2020-SITC2020.0687 (2020).Marabelle, A. et al. 316 EVICTION Study: Preliminary results in solid tumor patients with ICT01, a first-in-class, gamma9 delta2 T cell activating antibody targeting butyrophilin-3A. Journal for ImmunoTherapy of Cancer 8, A194-A195, doi:10.1136/jitc-2020-SITC2020.0316 (2020).Gassart, A. d. et al. 442 ICT01, an anti-BTN3A mAb that activates Vg9Vd2 T cells, plus interleukin-2: a potent and promising combination for cancer immunotherapy. Journal for ImmunoTherapy of Cancer 8, A268-A269, doi:10.1136/jitc-2020-SITC2020.0442 (2020).Walkey, C., Swanson, R., Ulge, U., Silva Manzano, D. A. & Drachman, J. 576 NL-201, a de novo IL-2 and IL-15 agonist, demonstrates enhanced in vivo antitumor activity in combination with multiple cancer immunotherapies. Journal for ImmunoTherapy of Cancer 8, A346-A346, doi:10.1136/jitc-2020-SITC2020.0576 (2020).Walkey, C. D. et al. Abstract 4518: Pre-clinical development of NL-201: A de novo α-independent IL-2/IL-15 agonist. Cancer Research 80, 4518–4518, doi:10.1158/1538-7445.Am2020-4518 (2020).Ethics ApprovalAll procedures involving animals described in this study have been reviewed and approved by the local ethic committee (CELEAG) and the French Ministry of Research.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Jean-Paul Vernot ◽  
Ana María Perdomo-Arciniegas ◽  
Luis Alberto Pérez-Quintero ◽  
Diego Fernando Martínez

The Lck interacting protein Tip ofHerpesvirus saimiriis responsible for T-cell transformation bothin vitroandin vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human andAotussp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


2018 ◽  
Vol 215 (4) ◽  
pp. 1101-1113 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Joon Seok Park ◽  
Jonas Marcello ◽  
Michael T. McCabe ◽  
Richard Gregory ◽  
...  

Differentiation and activation of T cells require the activity of numerous histone lysine methyltransferases (HMT) that control the transcriptional T cell output. One of the most potent regulators of T cell differentiation is the HMT Ezh2. Ezh2 is a key enzymatic component of polycomb repressive complex 2 (PRC2), which silences gene expression by histone H3 di/tri-methylation at lysine 27. Surprisingly, in many cell types, including T cells, Ezh2 is localized in both the nucleus and the cytosol. Here we show the presence of a nuclear-like PRC2 complex in T cell cytosol and demonstrate a role of cytosolic PRC2 in T cell antigen receptor (TCR)–mediated signaling. We show that short-term suppression of PRC2 precludes TCR-driven T cell activation in vitro. We also demonstrate that pharmacological inhibition of PRC2 in vivo greatly attenuates the severe T cell–driven autoimmunity caused by regulatory T cell depletion. Our data reveal cytoplasmic PRC2 is one of the most potent regulators of T cell activation and point toward the therapeutic potential of PRC2 inhibitors for the treatment of T cell–driven autoimmune diseases.


1999 ◽  
Vol 190 (10) ◽  
pp. 1383-1392 ◽  
Author(s):  
Martin F. Bachmann ◽  
Marijke Barner ◽  
Manfred Kopf

It has been proposed that CD2, which is highly expressed on T cells, serves to enhance T cell–antigen presenting cell (APC) adhesion and costimulate T cell activation. Here we analyzed the role of CD2 using CD2-deficient mice crossed with transgenic mice expressing a T cell receptor specific for lymphocytic choriomeningitis virus (LCMV)-derived peptide p33. We found that absence of CD2 on T cells shifted the p33-specific dose–response curve in vitro by a factor of 3–10. In comparison, stimulation of T cells in the absence of lymphocyte function–associated antigen (LFA)-1–intercellular adhesion molecule (ICAM)-1 interaction shifted the dose–response curve by a factor of 10, whereas absence of both CD2–CD48 and LFA-1–ICAM-1 interactions shifted the response by a factor of ∼100. This indicates that CD2 and LFA-1 facilitate T cell activation additively. T cell activation at low antigen density was blocked at its very first steps, as T cell APC conjugate formation, TCR triggering, and Ca2+ fluxes were affected by the absence of CD2. In vivo, LCMV-specific, CD2-deficient T cells proliferated normally upon infection with live virus but responded in a reduced fashion upon cross-priming. Thus, CD2 sets quantitative thresholds and fine-tunes T cell activation both in vitro and in vivo.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


Sign in / Sign up

Export Citation Format

Share Document